Vol. 26 No. 3 (2024)
Original articles

Mayonesas con contenido proteico mejorado y conservantes alimentarios naturales

Tiago Colombo Soares
Pharmaceutical Sciences School - University of São Paulo
Bio
Rosangela Pavan Torres
Pharmaceutical Sciences School - University of São Paulo
Bio
Jorge Mancini-Filho
Pharmaceutical Sciences School - University of São Paulo
Bio
Suzana Lannes
Universidade de Sao Paulo

Published 2024-08-29

Keywords

  • emulsion,
  • rheology,
  • structure,
  • thermal analysis

How to Cite

Colombo Soares, T., Pavan Torres, R., Mancini-Filho, J., & Lannes, S. (2024). Mayonesas con contenido proteico mejorado y conservantes alimentarios naturales. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 26(3), 125-137. https://doi.org/10.18271/ria.2024.593

Abstract

The aim was to prepare mayonnaises with natural preservatives and improved protein content to verify their structural and nutritional properties. Three formulations were developed (70% fat + variation in protein), F1 (powdered whey) did not reach the structural standards of commercial mayonnaise; F2 (skimmed milk) reached standards equivalent to commercialized products; F3 (powdered whey + skimmed milk) presented light mayonnaise pattern; F0 (Control). Protein content was higher than market products (more than 1.0 %). The evaluation of 30 days showed variations:  AW (0.934-0.941); extrusion values F1 (1.035 N ±0.026 – 0.566 N ±0.024), F2(4.255 N ±0.160 – 3.218 N ±0.060), F3 (3.198 N ±0.086 – 1.700 N ±0.044). The preservatives favored the color ∆E: F1 (11.31 ±0.04), F2 (2.65 ±0.14), F3 (1.65 ± 0.22). DPPH analysis showed the difference of products with added natural preservatives and whey in relation to the F0; F3 formulation was favored. Thixotropy appeared in all samples. The exothermic peak occurred F1 (6˚C - 7˚C), F2 (5˚C - 7˚C) and F3 (3˚C - 4˚C), indicating faster crystallization of the F3 (lipid-protein bond). The use of whey and powdered milk as emulsifying agent for mayonnaise emulsions, garlic and mustard, increased shelf life and protein content were demonstrated.

References

  1. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature. 118: 119-1200. http://dx.doi.org/10.1038/1811199a0
  2. Brand-Willians, W., Cuvelier, M. E., Berset, C. (1995). Use of free radical method evaluate antioxidant activity. LWT- Food Science and Technology.; 28 (1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  3. Brasil. Resolução da Diretoria Colegiada – RDC nº 360, de 23 de dezembro de 2003 (publicada em dou nº 251, de 26 de dezembro de 2003). ANVISA. Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados. 2003.
  4. Cavada, G.S, Paiva, F.F., Helbig, E., Borges, L.R. (2012) Rotulagem nutricional: você sabe o que está comendo? Brazilian Journal of Food Technology (IV SSA). 84-88. http://dx.doi.org/10.1590/S1981-67232012005000043
  5. Chang, C., Li, J., Li, X., Wang, C., Zhou, B., Su, Y., Yang, Y. (2017). Effect of protein microparticle and pectin on properties of light mayonnaise. LWT-Food Science and Technology. 82: 8-14. https://doi.org/10.1016/j.lwt.2017.04.013
  6. Cho, K. S., Hyun, K., Ahn, K. H., Lee, S. J. (2005). A geometrical interpretation of large amplitude oscillatory shear response. Journal of Rheology. 49: 747. https://doi.org/10.1122/1.1895801
  7. Degner, B. M., Chung, C., Schlegel, V., Hutikins, R., McClements, D. J. (2014). Factors influencing the freeze-thaw stability of emulsion-based foods. Comprehensive Reviews in Food Science and Food Safety. 13 (2): 98-113. https://doi.org/10.1111/1541-4337.12050
  8. Di Mattia, C.; Balestra, F.; Sacchetti, G.; Neri, L.; Mastrocola, D.; Pittia, P. (2015). Physical and structural properties of extra-virgin olive oil-based mayonnaise. LWT – Food Science and Technology. 62(1):764-770. https://doi.org/10.1016/j.lwt.2014.09.065
  9. Filocamo, A.,Nueno-Palop, C., Bisignano, C., Mandalari, G., Narbad, A. (2012). Effect of garlic powder on the growth of commensal bacteria from the gastrointestinal tract. Phytomedicine. 19 (8-9): 707-11. https://doi.org/10.1016/j.phymed.2012.02.018
  10. Flamminii, F., Di Mattia, C.D., Sacchetti, G., Neri, L., Mastrocola, D., Pittia, P. (2020). Physical and sensory properties of mayonnaise enriched with encapsulated olive leaf phenolic extracts. Foods. 9 (8): 997. https://doi.org/10.3390/foods9080997
  11. Food And Drug Admnistration (FDA), Tittle 21 – Food and Drugs, Chapter I – Food and Drug Administration Department of Health and Human Services, Subchapter B – Food For Human Consumption, Part 169 – Food Dressings and Flavorings, Subpart B – Requirements for Specific Standardized Food Dressings and Flavorings, Sec. 169.140 Mayonnaise, Revised as of April 1, 2019.
  12. Gosh, S., Coupland, J. N. (2008). Factors affecting the freeze-thaw stability of emulsions. Food Hydrocolloyds. 22 (1): 105-111. https://doi.org/10.1016/j.foodhyd.2007.04.013
  13. Horita, C. N., Farías-Campomanes, A. M., Esmerino, E. A., Gomes Da Cruz, A., Bolini, H. M. A., Meireles. M. A. A., Pollonio, M. A. R. (2016). The antimicrobial, antioxidant and sensory properties of garlic and its derivatives in Brazilian low-sodium frankfurtes along shelf-life. Food Research International. 84: 1-8. https://doi.org/10.1016/j.foodres.2016.02.006
  14. Ignácio, R. M. (2005). Comportamento reológico de emulsões tipo maionese. Dissertação de Mestrado – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 72 p. https://doi.org/10.11606/D.9.2017.tde-11122017-164020
  15. Ignácio, R. M. ; Lannes, S. C. S. (2013). Rheological characterization and texture of commercial mayonnaise using back extrusion. African Journal of Agricultural Research. 8 (31): 4262-4268. https://doi.org/10.5897/AJAR12.485
  16. Ishibashi, C., Hondoh, H., Ueno, S. (2016). Influence of morphology and plymorphic trransformation of fat crystals on the freeze-thaw stability of mayonnaise-type oil-in-water emulsions, Food Research International. 89: 604-613. https://doi.org/10.1016/j.foodres.2016.09.012
  17. Jay, J.M. (2000) Modern Food Microbiology. 6th Edition, Aspen Publishers, Inc., Gaithersburg. 625 p.
  18. Kupongsak, S., Sathitvorapojjana, S. (2017). Properties and Storage Stability of O/W Emulsion Replaced with Medium-Chain Fatty Acid Oil. Polish Journal of Food and Nutrition Science. ; 67 ( 2): 107-115. https://doi.org/10.1515/pjfns-2016-0015
  19. Lannes, S.C.S. (2017). Rheology as a Tool for Food Development. In: María Dolores Torres Pérez. (Org.). Advances in rheology researsh. 1ed.Hauppauge - USA: Nova Science Publishers. 1. p.289-308.
  20. Lee, H.; Oh, Y. A.; Min, S. C. (2015). Prediction of the coating requirements for smoked salmon protection against Listeria monocytogenes using a defatted mustard meal-based antimicrobial edible film containing thiocyanates, LWT – Food Science and Technology. 61: 231-237. https://doi.org/10.1016/j.lwt.2014.11.005
  21. Mao, C. F., Chen, J. C. (2006). Interchain association of locust bean gum in sucrose solutions: an interpretation based on thixotropic behavior. Food Hydrocolloids. 20 (5): 730–739. https://doi.org/10.1016/j.foodhyd.2005.07.002
  22. Mujumdar, A., Beris, A. N., Metzner, A. B. (2002). Transient phenomena in thixotropic systems. Journal of Non-Newtonian Fluid Mechanics. 102 (2): 157-178. https://doi.org/10.1016/S0377-0257(01)00176-8
  23. Mirhosseini, H., Tan, C.P., Hamid, N.S.A., Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil content on potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 315 (1-3): 47–56. https://doi.org/10.1016/j.colsurfa.2007.07.007
  24. Rao, A. M. (1999). Rheology of fluid and semisolid fluids: principles and applications, Gaithersburg, Aspen Publication Inc. 30 p.
  25. Pedreiro, S., Figueirinha, A., Cavaleiro, C., Cardoso, O., Donato, M.M., Salgueiro, L., Ramos, F. (2023). Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries. Antioxidants. 12, 252. https://doi.org/10.3390/antiox12020252
  26. Romeo R., De Bruno A., Piscopo A., Brenes M., Poliana M. (2021). Effects of phenolic enrichment on antioxidant activity of mayonnaise. Chemical Engineering Transactions. 87: 127-132. https://doi.org/10.3303/CET2187022
  27. Souza, S.M.F.C., Lima, K.C., Miranda, H.F., Cavalcanti, F.I.D. (2011). Utilização da informação nutricional de rótulos por consumidores de Natal, Brasil. Revista Panamericana de Salud Pública / Pan American Journal of Public Health. 29 (5): 337-343.
  28. Souza, R.S.C., Tonon, R.V., Stephan, M.P., Silva, C.M., Penteado, L., Cabral, L.M.C., Kurozawa, E. (2019). Evaluation of the antioxidant potential of whey protein concentrated by ultrafiltration and hydrolyzed by different commercial proteases. Brazilian Journal of Food Technology. 22, e2018021. https://doi.org/10.1590/1981-6723.02118
  29. Steffe, J. F. Rheological Methods In Food Process Engineering. 2˚ Ed. Freeman Press, East Lansing, Michigan State, USA, 418p. 1996.
  30. Sharma, A.; Jana, A. H.; Chavan, R. S. (2012). Functionality of Milk Powders and Milk-Based Powders for End Use Applications – A Review. Comprehensive Reviews in Food Science and Food Safety. 11(5):518-528. https://doi.org/10.1111/j.1541-4337.2012.00199.x
  31. Tabela Brasileira De Composição De Alimentos – TACO 4ª Edição Revisada E Ampliada. Núcleo De Estudos E Pesquisas Em Alimentação – NEPA Universidade Estadual De Campinas – UNICAMP. Campinas, SP, Brazil. 2011. 161 P.
  32. Wikipedia. https://pt.wikipedia.org/wiki/Prote%C3%ADna_do_leite_concentrada Accessed 10 Jan 2023.