Vol. 22 No. 1 (2020)
Case report

Induction of buds and roots in hypocotilos and cotiledones of Physalis peruviana when 6-bencilaminopurin and 2,4-dichlorophenoxyacetic are used

Karla Hernández-Villalobos
Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Peru
Julio Chico-Ruíz
Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Peru

Published 2020-09-03

Keywords

  • Regeneration,
  • aguaymanto,
  • organogenesis,
  • auxins,
  • cytokinin

How to Cite

Hernández-Villalobos, K. ., & Chico-Ruíz, J. . (2020). Induction of buds and roots in hypocotilos and cotiledones of Physalis peruviana when 6-bencilaminopurin and 2,4-dichlorophenoxyacetic are used. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(1), 86-94. https://doi.org/10.18271/ria.2020.539

Abstract

Physalis peruviana L. "aguaymanto" is a Solanaceae highly prized in countries such as Peru, Colombia and Ecuador due to its high nutritional value and numerous medicinal properties. Its cultivation has high variability because it is propagated by seeds, which makes it necessary to maintain its homogeneous morphological and productive characteristics. An alternative is in vitro micropropagation to subsequently achieve its technification and industrialization. Therefore, the objective of this work was to induce shoots and roots in hypocotyls and cotyledons of P. peruviana L. using auxins and cytokinins. Nine combinations were made between the concentrations of 2,4-D (0.25, 0.5 and 1.0 mg / l) and BAP (0.1, 0.25 and 1.0 mg / l), in which 20-day-old explants were introduced. The basal medium was that of Murashige & Skoog supplemented with 3% sucrose, phytagel (0.5%) and pH 6. After 70 days, after being exposed to photoperiod 16: 8, it was possible to induce callus formation in all treatments and in both types of explants. In addition, in the hypocotyls there was root induction with the 0.1 mg / l combination of 2,4-D + 1.0 mg / l of BAP and in the cotyledons roots were induced with the 0.5 mg / L combination of 2,4-D + 1.0 mg / L of BAP, and also roots and shoots in the combination 1 mg / l of 2,4-D + 1.0 mg / l of BAP. It is concluded that cotyledons favor the root / shoot regeneration process better than hypocotyls.

References

  1. Aniel O., Ramesh S., Subba S. (2015). Establishment of a Rapid Plant Regeneration System in Physalis angulata L. through Axillary Meristems. Not Sci Biol. 7(4):471-474. doi: 10.15835/nsb.7.4.9707
  2. Castro J., Ocampo Y., Franco L.(2015). Cape Gooseberry [Physalis peruviana L.] Calyces Ameliorate TNBS Acid-induced Colitis in Rats. Journal of Crohn's and Colitis, 1004–1015. doi:10.1093/ecco-jcc/jjv132
  3. Chacón M., Sánchez Y., Barrero L. (2016). Genetic structure of a Colombian cape gooseberry (Physalis peruviana L.) collection by means of microsatellite markers. Agronomia colombiana 34(1): 5-16. http://dx.doi.org/10.15446/agron.colomb.v34n1.52960
  4. Chen X., Qu Y., Sheng L., Liu J., Huang H. y Xu L. (2014). A simple method suitable to study de novo root organogenesis. Frontiers in Plant Science. Volume 5, Article 208. doi: 10.3389/fpls.2014.00208
  5. García-Osuna1 H., Escobedo L. , Robledo-Torres V. , Benavides A., Ramírez F. (2015). Germinación y micropropagación de tomate de cáscara (Physalis ixocarpa) tetraploide. Rev. Mex. Cienc. Agríc. 12: 2301-2311. http://www.scielo.org.mx/pdf/remexca/v6nspe12/2007-0934-remexca-6-spe12-2301-en.pdf
  6. Garzón-Martínez G., Osorio-Guarín J., Delgadillo-Durán P., Mayorga F., Enciso-Rodríguez F., Landsman D. (2015). Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers. Plant Gene 4:29–37. doi.org/10.1016/j.plgene.2015.09.003
  7. Greb T., Lohmann J. (2016). Plant stem cells. Current Biology 26, R816-R821. http://dx.doi.org/10.1016/j.cub.2016.07.070
  8. Guney M., Kafkas S., Kefayati S., Motalebipour E., Turkeli Y., Ercisli S.,Kafkas E. (2016). In vitro propogation of Physalis peruviana (l.) using apical shoot explants. Acta Sci. Pol. Hortorum Cultus, 15(5), 109-118. www.acta.media.pl
  9. Jahirhussain G., Parvathi S., Tamilsevan V., Muniappan V., Deepa K., Veerappan R. (2016). In vitro Shoot multiplication of Physalis minima L. an important Medicinal Herb. Journal of Advanced Applied Scientific Research: 49-58. Downloads/17-111-1-PB.pdf
  10. Leakey, R. (2014). Plant cloning: micropropagation. In: Van Alfen, N.K. (Ed.), Encyclopedia of Agriculture and Food Systems. Elsevier, San Diego, CA, pp. 349e359.
  11. Morillo-Coronado, A., González-Castillo, J., Morillo-Coronado, Y. (2018). Characterization of genetic diversity uchuva (physalis peruviana l.) In Boyacá. Biotecnología en el Sector Agropecuario y Agroindustrial
  12. Vol. 16 No 1: 26-33. doi.org/10.18684/bsaa.v16n1.631
  13. Murashige T., Skoog F. . (1964). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15(3): 473-497. doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Otroshy M., Mokhtari A., Khodaee M., Bazrafshan A. (2013). Direct regeneration fron leaves and nodes explants ao Physalis peruviana L. Int J Farming Allied Sci. 2(9):214–8.
  15. Pan J., Zhao F., Zhang G., Pan Y., Sun L., Bao N., Qin P., Chen L., Yu L., Zhang Y., Xu L. (2019). Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants. Journal of Genetics and Genomics 46(3): 133-140. https://doi.org/10.1016/j.jgg.2019.03.001
  16. Radhakrishnan D., Kareem A., Durgaprasad K., Sreeraj E., Sugimoto K., Prasad K. (2018). Shoot regeneration: a journey from acquisition of competence to completion. Current Opinion in Plant Biology 41:23–31. doi.org/10.1016/j.pbi.2017.08.001
  17. Rao Y., Shankar A., Lakshmi T., Rao K. (2014). Plant Regeneration in Physalis pubescens L. and Its Induced Mutants. Plant Tissue. 14(1):9–15.
  18. Sandhya H., Rao S. (2015). Role of growth regulators on in vitro callus induction and direct regeneration in Physalis minima Linn. International Letters of Natural Sciences Vol. 44: 38-44 doi:10.18052/www.scipress.com/ILNS.44.38
  19. Su Y., Zhang X. (2014). The hormonal control of regeneration in Plants . In Current Topics in Developmental Biology. Vol. 108: 36-61. http://dx.doi.org/10.1016/B978-0-12-391498-9.00010-3
  20. Sugiyama M. (2014). Molecular genetic analysis of organogenesis in vitro with temperature-sensitive mutants. Plant Biotechnol Rep 8:29–35
  21. doi: 10.1007/s11816-013-0292-1
  22. Swartwood K., Van Eck J. (2019). Development of plant regeneration and Agrobacterium tumefaciensmediated transformation methodology for Physalis pruinosa. Plant Cell, Tissue and Organ Culture (PCTOC) 137:465–472 https://doi.org/10.1007/s11240-019-01582-x
  23. Tymoszuk A., Antkowiak M. (2018). In vitro adventitious organogenesis in Ajania pacifica (Nakai) Bremer et Humphries. Journal of Biotechnology, Computational Biology and Bionanotechnology. 99(4): 335–343. http://doi.org/10.5114/bta.2018.79964
  24. Ventura, J.( 2019). Uso de manitol y sorbitol en la conservación in vitro de dos ecotipos comerciales de aguaymanto (Physalis peruviana). Tesis de título de Biólogo. Universidad Nacional Agraria La Molina. http://repositorio.lamolina.edu.pe/handle/UNALM/4034
  25. Ventura, E. (2016). Influencia del ácido giberélico y bencilaminopurina en la propagación clonal in vitro de Physalis peruviana L. Tesis de título de Ingeniero Agrónomo. Universidad Nacional de Cajamarca. http://repositorio.unc.edu.pe/handle/UNC/1782
  26. Xu L. (2018). De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition. Current Opinion in Plant Biology 41:39–45. doi.org/10.1016/j.pbi.2017.08.004
  27. Yousry M. (2013). In vitro Propagation and Somatic Embryogenesis in Egiptian Husk tomato (Physalis pubescens L.). J Appl Sci Res.9(3):1415–25. http://www.aensiweb.com/jasr/jasr/201.
  28. Yücesan B., Mohammed A., Arslan M., Gürel E. (2015). Clonal propagation and synthetic seed production from nodal segments of Cape gooseberry (Physalis peruviana L.), a tropical fruit plant. Turkish J Agric For. 39(5):797–806. doi:10.3906/tar-1412-86.