Vol. 23 Núm. 1 (2021)
Artículo original

Características fisicoquímicas, nutricionales y morfológicas de frutas nativas

Carlos César Augusto-Elías-Peñafiel
Universidad Nacional Mayor de San Marcos, Lima -Perú
Antonio José Obregón-La Rosa
Universidad Nacional Mayor de San Marcos, Lima -Perú
Eliana Contreras-López
Universidad Nacional Mayor de San Marcos, Lima -Perú
Gladys Constanza Arias-Arroyo
Universidad Nacional Mayor de San Marcos, Lima -Perú
Michael
Universidad Nacional Mayor de San Marcos, Lima -Perú

Publicado 2021-01-15

Palabras clave

  • vitamin c,
  • fiber,
  • soluble solids,
  • chemical analysis,
  • nutrients
  • vitamina C,
  • fibra,
  • sólidos solubles,
  • análisis químicos,
  • nutrientes

Cómo citar

Augusto-Elías-Peñafiel, C. C. ., Obregón-La Rosa, A. J. ., Contreras-López, E. ., Arias-Arroyo, G. C. ., & Bracamonte-Romero, M. . (2021). Características fisicoquímicas, nutricionales y morfológicas de frutas nativas . Revista De Investigaciones Altoandinas, 23(1), 17-25. https://doi.org/10.18271/ria.2021.202

Resumen

En el Perú existen muchas frutas nativas que poseen nutrientes esenciales para la salud y que han sido poco estudiadas. El objetivo de la presente investigación fue determinar las características fisicoquímicas, nutricionales y morfológicas de cinco variedades de frutas nativas: aguaymanto (Physalis peruviana), sanky (Corryocactus brevistylus), cocona (Solanum sessiliflorum), pitahaya amarilla (Selenicereus megalanthus) y camu camu (Myrciaria dubia), procedentes de la región andina central y de la selva norte peruana. Los frutos fueron lavados, pelados, pulpeados y liofilizados, para posteriormente, mediante métodos analíticos estandarizados, determinar el contenido de nutrientes, como vitamina C, fibra, sólidos solubles, entre otros. Los frutos aguaymanto, sanky y camu camu presentaron los mayores contenidos de vitamina C (43,0, 57,1 y 2780 mg por 100 g de peso fresco, respectivamente), respecto a la cocona y la pitahaya (4,54 y 8,0 mg por 100 g de peso fresco, respectivamente). El aguaymanto y la pitahaya (26,85 y 9,75 %) arrojaron los mayores contenidos de azúcares reductores. El aguaymanto y la cocona reportaron los mayores valores de fibra (4,9 y 2,5%, respectivamente). Con relación al contenido de sólidos solubles (°Brix), la pitahaya y el aguaymanto mostraron los mayores valores (16,2 y 13,3 respectivamente). En conclusión, los resultados obtenidos permiten demostrar que los frutos nativos estudiados, representan una fuente importante de nutrientes que podrían ser aprovechados en la alimentación humana.

Citas

  1. Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:https://doi.org/10.1016/j.jcs.2007.10.001
  2. Akter, M. S., Oh, S., Eun, J.-B., & Ahmed, M. (2011). Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food research international (Ottawa, Ont.), 44(7), 1728-1732. doi:https://doi.org/10.1016/j.foodres.2011.03.045
  3. AOAC. (2012). Official Methods of Analysis of AOAC International. In AOAC International (19th ed. ed.). Gaithersburg, Maryland, EE.UU.
  4. Arellano-Acuña, E., Rojas-Zavaleta, I., & Paucar-Menacho, L. M. (2016). Camu-camu (Myrciaria dubia): Fruta tropical de excelentes propiedades funcionales que ayudan a mejorar la calidad de vida. Scientia Agropecuaria, 7, 433-443. doi:http://dx.doi.org/10.17268/sci.agropecu.2016.04.08
  5. Azeez, M., Adubi, A., & Durodola, F. (2018). Landraces and Crop Genetic Improvement. In. I. Oscar Grillo (Series Ed.), Rediscovery of Landraces as a Resource for the Future. doi:http://dx.doi.org/10.5772/intechopen.75944
  6. Bazalar Pereda, M. S., Nazareno, M. A., & Viturro, C. I. (2019). Nutritional and Antioxidant Properties of Physalis peruviana L. Fruits from the Argentinean Northern Andean Region. Plant Foods for Human Nutrition, 74(1), 68-75. doi: https://doi.org/10.1007/s11130-018-0702-1
  7. Blanco de Alvarado-Ortiz, T. (2016). Alimentos nativos del Perú al mundo (U. S. I. d. Loyola Ed.). Lima - Perú.
  8. Campos, D., Chirinos, R., Gálvez Ranilla, L., & Pedreschi, R. (2018). Chapter Eight - Bioactive Potential of Andean Fruits, Seeds, and Tubers. In F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 84, pp. 287-343). doi:https://doi.org/10.1016/bs.afnr.2017.12.005
  9. Carvalho, C. M., Gross, L. A., de Azevedo, M. J., & Viana, L. V. (2019). Dietary Fiber Intake (Supplemental or Dietary Pattern Rich in Fiber) and Diabetic Kidney Disease: A Systematic Review of Clinical Trials. Nutrients, 11(2). doi:10.3390/nu11020347. (Accession No. 30736343)
  10. Castro Gómez, J. C., Gutiérrez Rodríguez, F., Acuña Amaral, C., Cerdeira Gutiérrez, L. A., Tapullima Pacaya, A., Cobos Ruiz, M., & Imán Correa, S. A. (2013). Variación del contenido de vitamina C y antocianinas en Myrciaria dubia "camu camu". Revista de la Sociedad Química del Perú, 79, 319-330. doi:https://doi.org/10.22386/ca.v3i2.54
  11. Castro, J. C., Maddox, J. D., & Imán, S. A. (2018). Camu-camu—Myrciaria dubia (Kunth) McVaugh. In S. Rodrigues, E. de Oliveira Silva, & E. S. de Brito (Eds.), Exotic Fruits (pp. 97-105). doi:https://doi.org/10.1016/B978-0-12-803138-4.00014-9
  12. Cañar, Y., Caetano, M., & Bonilla-Morales, M. (2014). Caracterización fisicoquímica y proximal del fruto de pitahaya amarilla [ Selenicereus megalanthus (K. Schum. Ex Vaupel) Moran] cultivada en Colombia. Revista Agronomía, 22 (1 ), 77-87. doi: https://doi.org/10.21930/978-958-740-147-9.
  13. Chirinos, R., Galarza, J., Betalleluz-Pallardel, I., Pedreschi, R., & Campos, D. (2010). Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages. Food Chemistry, 120(4), 1019-1024. doi:https://doi.org/10.1016/j.foodchem.2009.11.041
  14. Contreras-López, E., & Salvá Ruiz, B., K. (2018). Caracterización Sensorial de hamburguesa de llama con cáscara de sanky. Revista de Investigaciones Altoandinas, 20(2), 155-168. doi: http://dx.doi.org/10.18271/ria.2018.360.
  15. da Silva, F. C., Arruda, A., Ledel, A., Dauth, C., Romão, N. F., Viana, R. N., . . . Pereira, P. (2012). Antigenotoxic effect of acute, subacute and chronic treatments with Amazonian camu-camu (Myrciaria dubia) juice on mice blood cells. Food Chem Toxicol, 50(7), 2275-2281. doi:10.1016/j.fct.2012.04.021. (Accession No. 22542553)
  16. da Silva, T. L., Aguiar-Oliveira, E., Mazalli, M. R., Kamimura, E. S., & Maldonado, R. R. (2017). Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C. Food Chemistry, 224, 92-96. doi:https://doi.org/10.1016/j.foodchem.2016.12.052
  17. de Araújo Padilha, C. E., de Azevedo, J. C. S., de Sousa, F. C., de Oliveira, S. D., Souza, D. F. d. S., de Oliveira, J. A., . . . dos Santos, E. S. (2018). Recovery of polyphenols from camu-camu (Myrciaria dubia H.B.K. McVaugh) depulping residue by cloud point extraction. Chinese Journal of Chemical Engineering, 26(12), 2471-2476. doi:https://doi.org/10.1016/j.cjche.2017.10.032
  18. de Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., & Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934-940. doi:https://doi.org/10.1016/j.foodres.2014.05.018
  19. de Souza Schmidt Gonçalves, A. E., Lellis-Santos, C., Curi, R., Lajolo, F. M., & Genovese, M. I. (2014). Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats. Food Res Int, 64, 1-8. doi:10.1016/j.foodres.2014.05.074
  20. El-Beltagi, H. S., Mohamed, H. I., Safwat, G., Gamal, M., & Megahed, B. M. H. (2019). Chemical Composition and Biological Activity of Physalis peruviana L. Gesunde Pflanzen, 71(2), 113-122. doi:https://doi.org/10.1007/s10343-019-00456-8
  21. Encina Zelada, C. R. (2007). Influencia del descerado y composición del almíbar en la optimización del tratamiento térmico de la conservación del aguaymanto (Physalis peruviana; Linnaeus, 1753 ) para la mayor retención del ácido ascórbico. revistaeciperu, Maestría, 10. doi:https://doi.org/10.33017/reveciperu2007.0002/
  22. Etzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3, 73-81. doi:https://doi.org/10.1016/j.crfs.2020.03.002
  23. Ferrão, T. S., Ferreira, D. F., Flores, D. W., Bernardi, G., Link, D., Barin, J. S., & Wagner, R. (2013). Evaluation of composition and quality parameters of jelly palm (Butia odorata) fruits from different regions of Southern Brazil. Food Research International, 54(1), 57-62. doi:https://doi.org/10.1016/j.foodres.2013.06.002
  24. Gonzáles-Coral, A. (2007). Frutales nativos amazónicos: patrimonio alimenticio de la humanidad In I. d. I. d. l. A. Peruana (Ed.), (2ª ed.).
  25. Institute of Medicine Panel on Dietary Antioxidants and Related, C. (2000). In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. doi:https://doi.org/10.1016/S0899-9007(00)00596-7
  26. Jiménez, P. (2018). Cocona—Solanum sessiliflorum. In S. Rodrigues, E. de Oliveira Silva, & E. S. de Brito (Eds.), Exotic Fruits (pp. 153-158). doi:https://doi.org/10.1016/B978-0-12-803138-4.00020-4
  27. Kumar, S. B., Issac, R., & Prabha, M. L. (2018). Functional and health-promoting bioactivities of dragon fruit. Drug Invention Today, 10(3), 3307-3310.
  28. Lambeau, K. V., & McRorie, J. W., Jr. (2017). Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract, 29(4), 216-223. doi:https://doi.org/10.1002/2327-6924.12447. (Accession No. 28252255)
  29. Lipe Camero, C. R. (2016). Efecto hepatoprotector del zumo del fruto de Corryocactus brevistylus (Sanky) en ratones con daño hepático inducido por etanol. (Nutrición). Universidad Nacional Mayor de San Marcos. , Lima, Perú. Retrieved from http://cybertesis.unmsm.edu.pe/handle/cybertesis/5220
  30. Nolazco, D., & Guevara, A. (2009). Estudio de las principales características fisicoquímicas y comportamiento del Sanqui (Corryocactus brevistylus subsp. puquiensis (Rauh & Backeberg) Ostolaza) en almacenamiento. 70(4), 1-11.
  31. Novoa, R. H., Bojacá, M., Galvis, J. A., & Fischer, G. (2006). La madurez del fruto y el secado del cáliz influyen en el comportamiento poscosecha de la uchuva, almacenada a 12 °C (Physalis peruviana L.)*. Agronomía Colombiana, 24, 77-86. doi:https://doi.org/10.17584/rcch.2007v1i1.1141
  32. Ochoa-Velasco, C. E., García-Vidal, V., Luna-Guevara, J. J., Luna-Guevara, M. L., Hernández-Carranza, P., & Guerrero-Beltrán, J. Á. (2012). Características antioxidantes, fisicoquímicas y microbiológicas de jugo fermentado y sin fermentar de tres variedades de pitahaya (Hylocereus spp). Scientia Agropecuaria 3(4), 279-289. doi:https://doi.org/10.17268/sci.agropecu.2012.04.02.
  33. Ortiz-Hernández, Y., & Carrillo-Salazar, J. (2012). Pitahaya (Hylocereus spp.): a short review. Comunicata Scientiae ,, 3(4), 220-237. doi:https://doi.org/10.14295/cs.v3i4.334
  34. Ramadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830-1836. doi:https://doi.org/10.1016/j.foodres.2010.12.042
  35. Ramos, Z., García, L., Pinedo, M., & Souza, R. (2002). Factores de procesamiento y conservación de pulpa de Myrciaria Dubia HBK (Camu - Camu) que reduce el contenido de vitamina C (ácido ascórbico). . Revista amazónica de investigación alimentaria 2 (2 ), 89-90 doi:https://doi.org/10.24841/fa.v14i2.147
  36. Reyes García, M., Gómez-Sánchez Prieto, I., & Espinoza Barrientos, C. (2017). Tablas peruanas de composición de alimentos. Retrieved from: http://repositorio.ins.gob.pe/handle/INS/1034
  37. Richmond, R., Bowyer, M., & Vuong, Q. (2019). Australian native fruits: Potential uses as functional food ingredients. Journal of Functional Foods, 62, 103547. doi:https://doi.org/10.1016/j.jff.2019.103547
  38. Rodrigues, L. M., Romanini, E. B., Silva, E., Pilau, E. J., da Costa, S. C., & Madrona, G. S. (2020). Camu-camu bioactive compounds extraction by ecofriendly sequential processes (ultrasound assisted extraction and reverse osmosis). Ultrasonics Sonochemistry, 64, 105017. doi:https://doi.org/10.1016/j.ultsonch.2020.105017
  39. Sereno, A. B., Bampi, M., dos Santos, I. E., Ferreira, S. M. R., Bertin, R. L., & Krüger, C. C. H. (2018). Mineral profile, carotenoids and composition of cocona (Solanum sessiliflorum Dunal), a wild Brazilian fruit. Journal of Food Composition and Analysis, 72, 32-38. doi:https://doi.org/10.1016/j.jfca.2018.06.001
  40. Serna-Cock, L., Vargas-Muñoz, D. P., & Rengifo-Guerrero, C. A. (2015). Chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal). Brazilian Journal of Food Technology, 18, 192-198. doi:http://dx.doi.org/10.1590/1981-6723.4314.
  41. Sotomayor, A., Pitizaca, S., Sánchez, M., Burbano, A., Díaz, A., Nicolalde, J., . . . Vargas, Y. (2019). Evaluación físico química de fruta de pitahaya Selenicereus megalanthus en diferentes estados de desarrollo. Enfoque UTE, 10, 89-96. doi:http://dx.doi.org/10.29019/enfoqueute.v10n1.386
  42. Staffolo, M. D., Bertola, N., Martino, M., & Bevilacqua, y. A. (2004). Influence of dietary fiber addition on sensory and rheological properties of yogurt. International Dairy Journal, 14(3), 263-268. doi:https://doi.org/10.1016/j.idairyj.2003.08.004
  43. Tadeo, F. R., Terol, J., Rodrigo, M. J., Licciardello, C., & Sadka, A. (2020). Chapter 12 - Fruit growth and development. In M. Talon, M. Caruso, & F. G. Gmitter (Eds.), The Genus Citrus (pp. 245-269). doi:https://doi.org/10.1016/B978-0-12-812163-4.00012-7
  44. Terry Calderón, V. M. (2015). Deterioro de la vitamina C en pulpa de camu-camu (Myciaria dubia) pasteurizada almacenada en función del tiempo y la temperatura de almacenamiento Rev. Investig. Univ. Le Cordon Bleu 2(2), 47-58 doi:https://doi.org/10.36955/RIULCB.2015v2n2.004
  45. Ticona Quea, J. (2019). Caracterización física química, cinética de gelificación y evaluación espectroscópica de la pectina del mesocarpio del fruto Corryocactus brevistylus (sancayo). . (Doctorado en Ciencias: Química Doctorado). Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú. Retrieved from http://repositorio.unsa.edu.pe/handle/UNSA/8296
  46. Torres Grisales, Y., Melo Sabogal, D. V., Torres-Valenzuela, L., Serna-Jiménez, J., & Sanín Villarreal, A. (2017). Evaluation of bioactive compounds with functional interest from yellow pitahaya (Selenicereus megalanthus Haw). Revista Facultad Nacional de Agronomía Medellín, 70, 8311-8318. doi:http://dx.doi.org/10.15446/rfna.v70n3.66330.
  47. Vilaplana, R., Páez, D., & Valencia-Chamorro, S. (2017). Control of black rot caused by Alternaria alternata in yellow pitahaya (Selenicereus megalanthus) through hot water dips. LWT - Food Science and Technology, 82, 162-169. doi:https://doi.org/10.1016/j.lwt.2017.04.042
  48. Viñas Almenar, M. I., Usall Rodie, J., Echeverria Cortada, G., Graell Sarle, J., Lara Ayala, I., & Recasens Ginjuan, D. I. (2013). Poscosecha de pera, manzana y melocotón. In (Ediciones Paraninfo SA ed., pp. 358): Mundi-Prensa