Vol. 22 Núm. 2 (2020)
Artículo breve

Distribución potencial de Puya raimondii Harms en futuros escenarios del cambio climático

Wilder Rolando Quispe Rojas
Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Huancayo, Perú
Eduardo Elías Núñez
Programa de Investigación de Ecología y Biodiversidad, Asociación ANDINUS Huancayo, Perú

Publicado 2020-08-30

Palabras clave

  • Modelamiento de distribución potencial,
  • MaxEnt,
  • Andes,
  • cambio climático

Cómo citar

Quispe Rojas, W. R., & Elías Núñez, E. (2020). Distribución potencial de Puya raimondii Harms en futuros escenarios del cambio climático. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(2), 170-181. https://doi.org/10.18271/ria.2020.605

Resumen

El cambio climático antropogénico es una de las principales causas de pérdida de la biodiversidad. En este contexto, existe la necesidad de estudios basados en los futuros impactos del cambio climático de gran escala para proponer estrategias de conservación de especies en peligro de extinción como es el caso de Puya raimondii Harms, una especie de bromelia endémica de los Andes de Perú y Bolivia. En este artículo, nosotros modelamos la distribución potencial actual y futura de P. raimondii con la finalidad de identificar áreas prioritarias para la futura conservación de esta especie endémica. Nuestros resultados revelaron que 1) los espacios actuales potencialmente apropiadas están centrados para los andes de Perú y Bolivia con una extensión de 154268,40 km², y 2) en escenarios futuros de cambio climático para la década de 2070, hay una pérdida de áreas potenciales, viéndose una reducción de promedio de área a -34326,53 km² y -8193.22 km² para los dos escenarios climáticos de las vías de concentración representativas (RCP) 4,5 y RCP 8,5 respectivamente. Estos resultados sugieren que a escenarios de cambio climático solo cinco parches de hábitat serán idóneos para albergar a P. raimondii, por tanto, proponemos que las medidas de conservación deben ser priorizadas a dichas áreas.

Referencias

  1. Abba, M., Tognelli, M. F., Viviana, P., Benjam, J., & Vizca, S. F. (2012). Distribution of extant xenarthrans ( Mammalia : Xenarthra ) in Argentina using species distribution models. Mammalia, 76(May), 123–136. https://doi.org/10.1515/mammalia-2011-0089
  2. Aguilar-Soto, V., Melgoza-Castillo, A., Villarreal-Guerrero, F., Wehenkel, C., & Pinedo-Alvarez, C. (2015). Modeling the potential distribution of Picea chihuahuana Martínez, an endangered species at the Sierra Madre Occidental, Mexico. Forests, 6(3), 692–707. https://doi.org/10.3390/f6030692
  3. Aquino, W., Condo, F., Romero, J., & Yllaconza, R. (2018). Distribución geográfica y poblacional de Puya raimondii Harms en el distrito de Huarochirí, Lima, Perú. The Biologist(Lima), 16(1), 25–33. https://doi.org/10.24039/rtb2018161219.CITATIONS
  4. Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., & Yoccoz, N. G. (2011). Impacts of climate change on the world ’s most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2306–2311. https://doi.org/10.1073/pnas.1007217108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1007217108
  5. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters. https://doi.org/10.1111/j.1461-0248.2011.01736.x
  6. Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., & Russo, D. (2016). Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions, 18(6), 1759–1768. https://doi.org/10.1007/s10530-016-1118-1
  7. Chandra, J., Phinn, S., Butt, N., & McAlpine, C. A. (2017). Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning. Environmental Management, 60(3), 422–435. https://doi.org/10.1007/s00267-017-0884-6
  8. Chase, M. W., Christenhusz, M. J. M., Sanders, D., & Fay, M. F. (2009). Murderous plants: Victorian Gothic, Darwin and modern insights into vegetable carnivory. Botanical Journal of the Linnean Society, 161(4), 329–356. https://doi.org/10.1111/j.1095-8339.2009.01014.x
  9. Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432
  10. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322(5899), 258–261. https://doi.org/10.1126/science.1162547
  11. Cuyckens, G. A. E., Christie, D. A., Domic, A. I., Malizia, L. R., & Renison, D. (2016). Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Global and Planetary Change, 137, 79–87. https://doi.org/10.1016/j.gloplacha.2015.12.010
  12. Dolgener, N., Freudenberger, L., Schneeweiss, N., Ibisch, P. L., & Tiedemann, R. (2014). Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany. Regional Environmental Change, 14, 1063–1072. https://doi.org/10.1007/s10113-013-0468-9
  13. Escalante, T., Rodríguez-Tapia, G., Linaje, M., Illoldi-Rangel, P., & González-López, R. (2013). Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. Revista Especializada En Ciencias Químico-Biológicas, 16(1), 5–17. https://doi.org/10.1016/S1405-888X(13)72073-4
  14. Evangelista, A., Frate, L., Carranza, M. L., Attorre, F., Pelino, G., & Stanisci, A. (2016). Changes in composition, ecology and structure of high-mountain vegetation: A re-visitation study over 42 years. AoB PLANTS, 8(August), 1–11. https://doi.org/10.1093/aobpla/plw004
  15. Feeley, K. J., & Silman, M. R. (2010). Modelling the responses of Andean and Amazonian plant species to climate change: The effects of georeferencing errors and the importance of data filtering. Journal of Biogeography, 37(4), 733–740. https://doi.org/10.1111/j.1365-2699.2009.02240.x
  16. Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., … Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783–791. https://doi.org/10.1111/j.1365-2699.2010.02444.x
  17. Harrison, S., & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 119(2), 207–214. https://doi.org/10.1093/aob/mcw248
  18. IPCC. (2014). Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf
  19. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630. https://doi.org/10.1103/PhysRev.106.620
  20. Jiang, H., Liu, T., Li, L., Zhao, Y., Pei, L., & Zhao, J. (2016). Predicting the potential distribution of Polygala tenuifolia Willd. under climate change in China. PLoS ONE, 11(9), 3–5. https://doi.org/10.1371/journal.pone.0163718
  21. Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33), 11823–11826. https://doi.org/10.1073/pnas.0802891105
  22. Lambe, A. (2009). Puya raimondii. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2009-2.RLTS.T168358A6482345.en
  23. Lima, N. R., Moreno, J. A., Eras, V. H., Patiño, J. M., González, D., Yaguana, M., & Valarezo, C. (2018). Propagación in vitro de Cinchona officinalis L a partir de semillas In vitro propagation of Cinchona officinalis L from seeds. Journal of High Andean Research, 20(2), 169–178. https://doi.org/http://dx.doi.org/10.18271/ria.2018.361
  24. López-Tirado, J., Vessella, F., Schirone, B., & Hidalgo, P. J. (2018). Trends in evergreen oak suitability from assembled species distribution models: assessing climate change in south-western Europe. New Forests, 1–17. https://doi.org/10.1007/s11056-018-9629-5
  25. Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18(1), 1–12. https://doi.org/10.1186/s12898-018-0165-0
  26. Manish, K., Telwala, Y., Nautiyal, D. C., & Pandit, M. K. (2016). Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Modeling Earth Systems and Environment, 2(2), 92. https://doi.org/10.1007/s40808-016-0163-1
  27. Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  28. Molloy, S. W., Davis, R. A., & Van Etten, E. J. B. (2016). Incorporating field studies into species distribution and climate change modelling: A case study of the koomal trichosurus vulpecula hypoleucus (phalangeridae). PLoS ONE, 11(4), 1–18. https://doi.org/10.1371/journal.pone.0154161
  29. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(February), 853–858. https://doi.org/https://doi.org/10.1038/35002501
  30. Phillips, S. J., Anderson, R., & Schapire, R. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  31. Ramírez-Amezcua, Y., Steinmann, V. W., Ruiz-Sanchez, E., & Rojas-Soto, O. R. (2016). Mexican alpine plants in the face of global warming: potential extinction within a specialized assemblage of narrow endemics. Biodiversity and Conservation, 25(5), 865–885. https://doi.org/10.1007/s10531-016-1094-x
  32. Salazar, J., Cacéres, F., Poma, I., Raimondo, F. (2010). Diagnostico del estado actual de conservación de Puya raimondii en Arequipa ( Perú ). Quad. Bot. Amb. Appl., 21(2010), 85–93.
  33. Salazar Castillo, J., Caceres De Baldarrago, F., & Poma, I. (2014). Puya raimondii the queen of Andes. Puya raimondii la regina delle Ande. Focus, 25. Retrieved from https://www.researchgate.net/publication/262676713_Puya_raimondii_the_queen_of_de_Andes_Puya_raimondii_la_regina_delle_Ande
  34. Sgorbati, S., Labra, M., Grugni, E., Barcaccia, G., Galasso, G., Boni, U., … Scannerini, S. (2004). A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biology, 6(2), 222–230. https://doi.org/10.1055/s-2004-817802
  35. Suni, M. L., Cano, A., & Vadillo, G. (2001). Ensayos preliminares de germinación en puya raimondii harms (Bromeliaceae). Revista Peruana de Biologia, 8(1), 53–59. https://doi.org/10.15381/rpb.v8i1.6513
  36. Thomas, E., Jalonen, R., Loo, J., Boshier, D., Gallo, L., Cavers, S., … Bozzano, M. (2014). Forest Ecology and Management Genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management, 333, 66–75. https://doi.org/10.1016/j.foreco.2014.07.015
  37. Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(2), 1–15. https://doi.org/10.1029/2008JD011021
  38. Vadillo, G., Suni, M., & Cano, A. (2004). Viabilidad y germinación de semillas de Puya raimondii Harms (Bromeliaceae). Revista Peruana de Biologia, 11(1), 71–78. https://doi.org/10.15381/rpb.v11i1.2435
  39. Vadillo, G., Suni, M., & Roca, W. (2007). Evaluación de la Diversidad Genética y morfológica de Puya raimondii. Serie de Publicaciones de Flora y Fauna Silvestre.Instituto Nacional de Recursos Naturales, 1–13.
  40. Vandelook, F., Janssens, S. B., & Probert, R. J. (2012). Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytologist, 195(2), 479–487. https://doi.org/10.1111/j.1469-8137.2012.04172.x
  41. Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J., & Brotons, L. (2017). Integrating species distribution modelling into decision-making to inform conservation actions. Biodiversity and Conservation, 26(2), 251–271. https://doi.org/10.1007/s10531-016-1243-2
  42. Williams, N. (2009). Red list species update fears. Current Biology, 19(22), R1013–R1014. https://doi.org/doi:10.1016/j.cub.2009.11.007
  43. Wróblewska, A., & Mirski, P. (2017). From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, (2012), 1–16. https://doi.org/10.1007/s10113-017-1208-3
  44. Yan, D., Chen, W., Liu, L., Li, J., Liu, L., & Wang, Y. (2017). Change in current and future geographic distributions of Ulmus lamellosa in China. Journal of Forestry Research, pp. 1–10. https://doi.org/10.1007/s11676-017-0503-7
  45. Zhang, L., Cao, B., Bai, C., Li, G., & Mao, M. (2016). Predicting suitable cultivation regions of medicinal plants with Maxent modeling and fuzzy logics: a case study of Scutellaria baicalensis in China. Environmental Earth Sciences, 75(5), 1–12. https://doi.org/10.1007/s12665-015-5133-9