Aplicación alimentaria de la quinua germinada y valorización de sus propiedades nutricionales, biológicas y funcionales: Una revisión sistemática
Publicado 2024-05-02
Palabras clave
- Chenopodium quinoa Willd,
- germinación,
- compuestos bioactivos,
- alimento funcional,
- antioxidante
Derechos de autor 2024 Joselin Paucarchuco Soto, Jamir Ever Vilchez De la Cruz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
La germinación de la quinua mejora el contenido de polifenoles, flavonoides, aminoácidos, fibra dietética, vitamina E, antioxidantes y otros compuestos bioactivos, convirtiendo a este pseudocereal en una fuente nutritiva y saludable para la elaboración de alimentos funcionales. El objetivo de este trabajo fue evaluar el efecto de la germinación de quinua sobre las propiedades nutricionales, biológicas y funcionales, a su vez poder analizar el potencial que tiene este grano de oro en la industria alimentaria. Para la revisión sistemática, se empleó las bases de datos (Scopus, Scielo y Science Direct), siguiendo la directriz PRISMA y la estrategia PIO (Población, Intervención, Outputs), los cuales ayudaron a formular las ecuaciones de búsqueda y a identificar los artículos más relevantes de los últimos 5 años. Los resultados del análisis bibliométrico, evidenciaron que la germinación de quinua mejora las propiedades nutricionales y el contenido de metabolitos secundarios, también representa una fuente potencial para el desarrollo de productos alimentarios con propiedades funcionales y nutraceúticas. Un estudio reciente confirmo que después de 4 días de germinación el contenido fenólico total de varios tipos de quinua oscila entre 39,29 y 782,15 mg/100 g, lo que indica una potente capacidad de eliminación de radicales libres, convirtiendo a este pseudocereal en una materia prima con capacidad de ser aplicada en la formulación de diversos productos alimentarios como panes, galletas, pizzas, bebidas, yogurt, quesos, etc.
Referencias
- Abbasi, S., Moslehishad, M., & Salami, M. (2022). Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. International Journal of Biological Macromolecules, 213, 602-609. https://doi.org/10.1016/j.ijbiomac.2022.05.189
- Aguilar, J., Miano, A. C., Obregón, J., Soriano-Colchado, J., & Barraza-Jáuregui, G. (2019). Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science, 90, 102858. https://doi.org/10.1016/j.jcs.2019.102858
- Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients, 12(10), Art. 10. https://doi.org/10.3390/nu12102904
- Badia-Olmos, C., Sánchez-García, J., Laguna, L., Zúñiga, E., Mónika Haros, C., Maria Andrés, A., & Tarrega, A. (2024). Flours from fermented lentil and quinoa grains as ingredients with new techno-functional properties. Food Research International, 177, 113915. https://doi.org/10.1016/j.foodres.2023.113915
- Balakrishnan, G., & Schneider, R. G. (2023). Tocopherol degradation and lipid oxidation during storage of Chenopodium quinoa. Journal of Food Composition and Analysis, 123, 105549. https://doi.org/10.1016/j.jfca.2023.105549
- Bhinder, S., Kumari, S., Singh, B., Kaur, A., & Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346, 128915. https://doi.org/10.1016/j.foodchem.2020.128915
- Cáceres, P. J., Peñas, E., Martínez-Villaluenga, C., García-Mora, P., & Frías, J. (2019). Development of a multifunctional yogurt-like product from germinated brown rice. LWT, 99, 306-312. https://doi.org/10.1016/j.lwt.2018.10.008
- Cao, Y., Zou, L., Li, W., Song, Y., Zhao, G., & Hu, Y. (2020). Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. International Journal of Biological Macromolecules, 163, 55-65. https://doi.org/10.1016/j.ijbiomac.2020.06.241
- Causin, H. F., Bordón, D. A. E., & Burrieza, H. (2020). Salinity tolerance mechanisms during germination and early seedling growth in Chenopodium quinoa Wild. Genotypes with different sensitivity to saline stress. Environmental and Experimental Botany, 172, 103995. https://doi.org/10.1016/j.envexpbot.2020.103995
- Ceyhun Sezgin, A., & Sanlier, N. (2019). A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Willd.). Trends in Food Science & Technology, 86, 51-58. https://doi.org/10.1016/j.tifs.2019.02.039
- Chaudhary, N., Walia, S., & Kumar, R. (2023). Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. Journal of Food Composition and Analysis, 118, 105192. https://doi.org/10.1016/j.jfca.2023.105192
- Chen, L., Wu, J., Li, Z., Liu, Q., Zhao, X., & Yang, H. (2019). Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chemistry, 286, 87-97. https://doi.org/10.1016/j.foodchem.2019.01.183
- Darwish, A. M. G., Al- Jumayi, H. A. O., & Elhendy, H. A. (2021). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti-anemic potential in Sprague–Dawley male albino rats. Cereal Chemistry, 98(2), 315-327. https://doi.org/10.1002/cche.10366
- De-La-Cruz-Yoshiura, S., Vidaurre-Ruiz, J., Alcázar-Alay, S., Encina-Zelada, C. R., Cabezas, D. M., Correa, M. J., & Repo-Carrasco-Valencia, R. (2023). Sprouted Andean grains: An alternative for the development of nutritious and functional products. Food Reviews International, 39(8), 5583-5611. https://doi.org/10.1080/87559129.2022.2083158
- Demir, B., & Bilgiçli, N. (2020). Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. Journal of Food Science and Technology, 57(10), 3884-3892. Scopus. https://doi.org/10.1007/s13197-020-04420-7
- Ding, L., Yang, Q., Zhang, E., Wang, Y., Sun, S., Yang, Y., Tian, T., Ju, Z., Jiang, L., Wang, X., Wang, Z., Huang, W., & Yang, L. (2021). Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharmaceutica Sinica B, 11(6), 1541-1554. https://doi.org/10.1016/j.apsb.2021.03.038
- FAOSTAT. (2022). FAOSTAT. https://www.fao.org/faostat/es/#data
- Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant’Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630. Scopus. https://doi.org/10.1080/10408398.2014.1001811
- Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165. https://doi.org/10.1016/j.tifs.2022.04.007
- Guardianelli, L. M., Salinas, M. V., Brites, C., & Puppo, M. C. (2022). Germination of White and Red Quinoa Seeds: Improvement of Nutritional and Functional Quality of Flours. Foods, 11(20), Art. 20. https://doi.org/10.3390/foods11203272
- Guo, H., Wu, H., Sajid, A., & Li, Z. (2022). Whole grain cereals: The potential roles of functional components in human health. Critical Reviews in Food Science and Nutrition, 62(30), 8388-8402. https://doi.org/10.1080/10408398.2021.1928596
- Jiménez, D., Lobo, M., Irigaray, B., Grompone, M. A., & Sammán, N. (2020). Oxidative stability of baby dehydrated purees formulated with different oils and germinated grain flours of quinoa and amaranth. LWT, 127, 109229. https://doi.org/10.1016/j.lwt.2020.109229
- José Rodríguez Gómez, M., Calvo Magro, P., Reguera Blázquez, M., Maestro-Gaitán, I., Sánchez Iñiguez, F. M., Cruz Sobrado, V., & Matías Prieto, J. (2023). Nutritional composition of quinoa leafy greens: An underutilized plant-based food with the potential of contributing to current dietary trends. Food Research International, 113862. https://doi.org/10.1016/j.foodres.2023.113862
- Joy Ujiroghene, O., Liu, L., Zhang, S., Lu, J., Zhang, C., Lv, J., Pang, X., & Zhang, M. (2019). Antioxidant capacity of germinated quinoa-based yoghurt and concomitant effect of sprouting on its functional properties. LWT, 116, 108592. https://doi.org/10.1016/j.lwt.2019.108592
- Kibar, H., Temel, S., & Yücesan, B. (2021). Kinetic modeling and multivariate analysis on germination parameters of quinoa varieties: Effects of storage temperatures and durations. Journal of Stored Products Research, 94, 101880. https://doi.org/10.1016/j.jspr.2021.101880
- Kumari, S., Bhinder, S., Singh, B., & Kaur, A. (2023). Physicochemical properties, non-nutrients and phenolic composition of germinated freeze-dried flours of foxtail millet, proso millet and common buckwheat. Journal of Food Composition and Analysis, 115, 105043. https://doi.org/10.1016/j.jfca.2022.105043
- Lalaleo, L., Hidalgo, D., Valle, M., Calero-Cáceres, W., Lamuela-Raventós, R. M., & Becerra-Martínez, E. (2020). Differentiating, evaluating, and classifying three quinoa ecotypes by washing, cooking and germination treatments, using 1H NMR-based metabolomic approach. Food Chemistry, 331, 127351. https://doi.org/10.1016/j.foodchem.2020.127351
- Liu, S., Wang, W., Lu, H., Shu, Q., Zhang, Y., & Chen, Q. (2022). New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology, 123, 187-197. https://doi.org/10.1016/j.tifs.2022.02.029
- Lopes, C. de O., Barcelos, M. de F. P., Vieira, C. N. de G., de Abreu, W. C., Ferreira, E. B., Pereira, R. C., & de Angelis-Pereira, M. C. (2019). Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. Journal of Food Science and Technology, 56(1), 40-48. https://doi.org/10.1007/s13197-018-3436-z
- Maleki, S., Razavi, S. H., & Yadav, H. (2023). Diabetes and seeds: New horizon to promote human nutrition and anti-diabetics compounds in grains by germination. Critical Reviews in Food Science and Nutrition, 63(27), 8457-8477. https://doi.org/10.1080/10408398.2022.2063793
- Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47-58. https://doi.org/10.1016/j.ijfoodmicro.2018.08.005
- Motta, C., Delgado, I., Matos, A. S., Gonzales, G. B., Torres, D., Santos, M., Chandra-Hioe, M. V., Arcot, J., & Castanheira, I. (2017). Folates in quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum): Influence of cooking and malting. Journal of Food Composition and Analysis, 64, 181-187. https://doi.org/10.1016/j.jfca.2017.09.003
- Niu, M., Chen, X., Zhou, W., Guo, Y., Yuan, X., Cui, J., Shen, Z., & Su, N. (2023). Multi-omics analysis provides insights into lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts. Food Research International, 171, 113026. https://doi.org/10.1016/j.foodres.2023.113026
- Obaroakpo, J. U., Liu, L., Zhang, S., Jing, L., Liu, L., Pang, X., & Lv, J. (2020). Bioactive assessment of the antioxidative and antidiabetic activities of oleanane triterpenoid isolates of sprouted quinoa yoghurt beverages and their anti-angiogenic effects on HUVECS line. Journal of Functional Foods, 66, 103779. https://doi.org/10.1016/j.jff.2020.103779
- Oliveira, M. E. A. S., Coimbra, P. P. S., Galdeano, M. C., Carvalho, C. W. P., & Takeiti, C. Y. (2022). How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends in Food Science & Technology, 122, 13-23. https://doi.org/10.1016/j.tifs.2022.02.015
- Pachari Vera, E., Alca, J. J., Rondón Saravia, G., Callejas Campioni, N., & Jachmanián Alpuy, I. (2019). Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. Journal of Cereal Science, 88, 132-137. https://doi.org/10.1016/j.jcs.2019.05.015
- Pandya, A., Thiele, B., Zurita-Silva, A., Usadel, B., & Fiorani, F. (2021). Determination and Metabolite Profiling of Mixtures of Triterpenoid Saponins from Seeds of Chilean Quinoa (Chenopodium quinoa) Germplasm. Agronomy, 11(9), Art. 9. https://doi.org/10.3390/agronomy11091867
- Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., & Peñas, E. (2018). Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science & Technology, 53(2), 516-524. https://doi.org/10.1111/ijfs.13623
- Pilco-Quesada, S., Tian, Y., Yang, B., Repo-Carrasco-Valencia, R., & Suomela, J.-P. (2020). Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science, 94, 102996. https://doi.org/10.1016/j.jcs.2020.102996
- Prasad, P., & Sahu, J. K. (2023). Effect of soaking and germination on grain matrix and glycaemic potential: A comparative study on white quinoa, proso and foxtail millet flours. Food Bioscience, 56, 103105. https://doi.org/10.1016/j.fbio.2023.103105
- Ren, G., Teng, C., Fan, X., Guo, S., Zhao, G., Zhang, L., Liang, Z., & Qin, P. (2023). Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 410, 135290. https://doi.org/10.1016/j.foodchem.2022.135290
- Romano, A., & Ferranti, P. (2023). 2.10 - Pseudocereals: Quinoa (Chenopodium quinoa Willd.). En P. Ferranti (Ed.), Sustainable Food Science—A Comprehensive Approach (pp. 141-149). Elsevier. https://doi.org/10.1016/B978-0-12-823960-5.00004-4
- Sánchez-García, J., Muñoz-Pina, S., García-Hernández, J., Heredia, A., & Andrés, A. (2023). Fermented quinoa flour: Implications of fungal solid-state bioprocessing and drying on nutritional and antioxidant properties. LWT, 182, 114885. https://doi.org/10.1016/j.lwt.2023.114885
- Sánchez-García, J., Muñoz-Pina, S., García-Hernández, J., Heredia, A., & Andrés, A. (2024). Volatile profile of quinoa and lentil flour under fungal fermentation and drying. Food Chemistry, 430, 137082. https://doi.org/10.1016/j.foodchem.2023.137082
- Seal, C. J., Courtin, C. M., Venema, K., & de Vries, J. (2021). Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2742-2768. https://doi.org/10.1111/1541-4337.12728
- Serra, D., Almeida, L. M., & Dinis, T. C. P. (2018). Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends in Food Science & Technology, 78, 224-233. https://doi.org/10.1016/j.tifs.2018.06.007
- Song, J., & Peng, J. (2023). Qualitative and Quantitative Analysis of Characteristic Sugars in Three Colored Quinoas Based on Untargeted and Targeted Metabolomics (SSRN Scholarly Paper 4585909). https://doi.org/10.2139/ssrn.4585909
- Stikić, R. I., Milinčić, D. D., Kostić, A. Ž., Jovanović, Z. B., Gašić, U. M., Tešić, Ž. Lj., Djordjević, N. Z., Savić, S. K., Czekus, B. G., & Pešić, M. B. (2020). Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 97(3), 626-633. https://doi.org/10.1002/cche.10278
- Suárez-Estrella, D., Cardone, G., Buratti, S., Pagani, M. A., & Marti, A. (2020). Sprouting as a pre-processing for producing quinoa-enriched bread. Journal of Cereal Science, 96, 103111. https://doi.org/10.1016/j.jcs.2020.103111
- Tang, Y., Li, X., Chen, P. X., Zhang, B., Liu, R., Hernandez, M., Draves, J., Marcone, M. F., & Tsao, R. (2016). Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. Journal of Agricultural and Food Chemistry, 64(5), 1103-1110. https://doi.org/10.1021/acs.jafc.5b05414
- Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q. U., Jan, S., Singh, T. P., & Dhaliwal, H. S. (2021). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4, 917-925. https://doi.org/10.1016/j.crfs.2021.11.019
- Urrútia, G., & Bonfill, X. (2010). [PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses]. Medicina Clinica, 135(11), 507-511. https://doi.org/10.1016/j.medcli.2010.01.015
- Venlet, N. V., Hettinga, K. A., Schebesta, H., & Bernaz, N. (2021). Perspective: A Legal and Nutritional Perspective on the Introduction of Quinoa-Based Infant and Follow-on Formula in the EU. Advances in Nutrition, 12(4), 1100-1107. https://doi.org/10.1093/advances/nmab041
- Vicente-Sánchez, M. L., Castro-Alija, M. J., Jiménez, J. M., María, L.-V., María Jose, C., Pastor, R., & Albertos, I. (2023). Influence of salinity, germination, malting and fermentation on quinoa nutritional and bioactive profile. Critical Reviews in Food Science and Nutrition, 0(0), 1-16. https://doi.org/10.1080/10408398.2023.2188948
- Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6. https://doi.org/10.1016/j.cofs.2016.11.007
- Wang, T.-Y., Tao, S.-Y., Wu, Y.-X., An, T., Lv, B.-H., Liu, J.-X., Liu, Y.-T., & Jiang, G.-J. (2022). Quinoa Reduces High-Fat Diet-Induced Obesity in Mice via Potential Microbiota-Gut-Brain-Liver Interaction Mechanisms. Microbiology Spectrum, 10(3), e00329-22. https://doi.org/10.1128/spectrum.00329-22
- Wu, Q., Bai, X., Wu, X., Xiang, D., Wan, Y., Luo, Y., Shi, X., Li, Q., Zhao, J., Qin, P., Yang, X., & Zhao, G. (2020). Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa. Plant Physiology and Biochemistry, 151, 443-456. https://doi.org/10.1016/j.plaphy.2020.03.050
- Xing, B., Teng, C., Sun, M., Zhang, Q., Zhou, B., Cui, H., Ren, G., Yang, X., & Qin, P. (2021). Effect of germination treatment on the structural and physicochemical properties of quinoa starch. Food Hydrocolloids, 115, 106604. https://doi.org/10.1016/j.foodhyd.2021.106604
- Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry, 295, 579-587. https://doi.org/10.1016/j.foodchem.2019.05.167
- Yañez-Yazlle, M. F., Romano-Armada, N., Acreche, M. M., Rajal, V. B., & Irazusta, V. P. (2021). Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. Ecotoxicology and Environmental Safety, 218, 112273. https://doi.org/10.1016/j.ecoenv.2021.112273
- Zhang, Y., Ma, Z., Cao, H., Huang, K., & Guan, X. (2022). Effect of germinating quinoa flour on wheat noodle quality and changes in blood glucose. Food Bioscience, 48, 101809. https://doi.org/10.1016/j.fbio.2022.101809
- Zhu, F. (2023). 12—Quinoa-based food product development. En F. Zhu (Ed.), Quinoa (pp. 317-376). Academic Press. https://doi.org/10.1016/B978-0-323-99909-0.00010-6