Vol. 20 No. 4 (2018)
Original articles

Numerical analysis of water infiltration in an unsaturated residual soil by using the water retention curve

Erasmo G. Carnero Carnero
National University of the Altiplano Puno Peru
Gonzalo G. Carnero Guzmán
National University of the Altiplano Puno Peru

Published 2018-12-29

Keywords

  • Unsaturated soil,
  • soil water retention curve,
  • suction,
  • water infiltration in soils,
  • finite elements

How to Cite

Carnero Carnero, E. G. ., & Carnero Guzmán, G. G. . (2018). Numerical analysis of water infiltration in an unsaturated residual soil by using the water retention curve. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(4), 439-450. https://doi.org/10.18271/ria.2018.421

Abstract

The water infiltration analysis in soils is indispensable in order to understand how the moisture variations in the soil occurs in real situations as well as its influence in the engineering properties. However, such analysis requires the unsaturated soil parameters for the computations. These parameters, such as the unsaturated hydraulic conductivity can be estimated by using the soil water retention curve (SWRC). The SWRC governs the hydration and dehydration process in soils. The current research, studies the water infiltrations in a residual soil from Brazil under two unsaturated initial conditions. The analysis was performed by using a finite elements software employing the SWRC of the soil obtained experimentally. The results show that the saturation time is in function of the initial saturation of the soil and the quality of experimental data in the SWRC.

References

  1. CARMAN, P.C. (1937) Fluid flow through granular beds. Transactions, Institution of Chemical Engineers, London, v.15, p. 150-166.
  2. CARMAN, P.C. (1956) Flow of gases through porous media. Butterworths, London. 182p.
  3. CARNERO, G.G. (2014) Contribution to the study of the behavior of a quasi-saturated unsaturated compacted soil. MSc dissertation, University of São Paulo, São Paulo, Brazil, (In Portuguese). 229p.
  4. CARNERO, G.G.; CARNERO, E. G. (2015). Técnica constructiva de terraplenes húmedos y su aplicación en la geotecnia moderna. Rev. Investig. Altoandin., 17(3), 311-320. doi: http://dx.doi.org/10.18271/ria.2015.142
  5. CHANDLER, R.J.; CRILLY, M.S.; MONTGOMERY-SMITH, G. (1992) A low-cost method of assessing clay desiccation for low-rise buildings. Proceeding of the Institution of Civil Engineering, v.92, n.2, p. 82-89.
  6. CHANDLER, R.J.; GUTIERREZ, C.I. (1986) The filter-paper method of suction measurement. Geotechnique, v.36, n.2, p. 265-268.
  7. DURNER, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res, 30(2), 11-23. doi: 10.1029/93WR02676
  8. FREDLUND, D.G.; RAHARDJO, H.; FREDLUND, M.D. (2012) Soil mechanics for unsaturated soils. John Wiley & Sons, New York, 926p.
  9. FREDLUND, D.G.; XING, A. (1994) Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, v.32, n.3, p. 521-532.
  10. FREDLUND, D.G.; XING, A.; & HUANG, S. (1994). Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 533-546. doi: 10.1139/t94-062
  11. FREDLUND, D.G., HOUSTON, S.L. (2009). Protocol for the assessment of unsaturated soil properties in geotechnical engineering practice. Canadian Geotechnical Journal, 46(6), 694-707. doi: 10.1139/t09-010
  12. GEORGETTI, G.B. (2010) Resistência de um solo não saturado a partir de ensaios com teor de umidade constante (CW). Tese (mestrado) – Escola de engenharia de São Carlos da Universidade de São Paulo – São Carlos, 2010.
  13. HILF, J.W. (1956) An investigation of pore-water pressure un compacted cohesive soils. PhD thesis – Faculty of Graduate School, University of Colorado, Denver.
  14. HILLEL, D. (1971) Physical principles. In: Soil and Water: Physical principles and processes. New York: Academics Press, p. 5-127.
  15. KARUP, D., MOLDRUP, P., TULLER, M., ARTHUR, E., & JONGE, L. (2017). Prediction of the soil water retention curve for structured soil from saturation to oven‐dryness. European Journal of Soil Science, 68(1), 57-65.
  16. KOZENY, J. (1927) Ueber kapillare leitung des wassers im boden. Sitzunberg Akad. Wiss, Wien, v.136, n.2a, p. 271-306.
  17. LIBARDI. P.L. (1995) Dinamica da agua no solo. Piracicaba: ESALQ/USP – Departamento de Fisica e Meteorologia, 497p.
  18. LU, N.; LIKOS W.J. (2004). Unsaturated soil mechanics. Hoboken, N.J.: J. Wiley. 556p.
  19. MARINHO, F.A.M. (1994) Medição de sucção com o método do papel filtro. X Congresso Brasileiro de Mecânica dos Solos e Engenharia de Fundação - Foz de Iguaçu - Paraná - Novembro. pp.515-5227.
  20. MARINHO, F. A. M. (1997) Medição de sucção em solos. In: Anais Simpósio Brasileiro de Solos Não Saturados, 3, Rio de Janeiro. v2, p. 373-384.
  21. MARINHO, F.A.M. (2005) Os solos não saturados: aspectos teóricos, experimentais e aplicados. Concurso de Livre-Docência (Geomecânica). Escola Politécnica, Universidade de São Paulo, São Paulo, 201p.
  22. MARINHO, F., GONZALO CARNERO GUZMAN, G., & DEL GAUDIO ORLANDO, P. (2016). Constant Water Content Compression Tests on Unsaturated Compacted Soil with Suction Measurement Using a HCT. International Journal of Geomechanics, 16(6).
  23. MENDES, R.M (2004). Estudo das propriedades geotecnicas de solos residuais tropicais nao saturados de Ubatuba (SP). Tese (doutorado) – Escola Politécnica da Universidade de São Paulo – Departamento de Engenharia de Estruturas e Fundações, São Paulo.
  24. MUALEM, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. doi: 10.1029/WR012i003p00513
  25. OLIVEIRA, O.M. (2004) Estudo sobre a resistência ao cisalhamento de um solo residual compactado não saturado. Tese (doutorado) – Escola Politécnica da Universidade de São Paulo – Departamento de Engenharia de Estruturas e Fundações, São Paulo.
  26. RIDLEY, A.M.; BURLAND, J.B. (1993) A new instrument of the measurement of soil moisture suction. Géotechnique, v.43, n.2, p. 321-324.
  27. STUERMER, M.M. (1998) Estudo da capacidade de retenção de água em um solo residual compactado. Dissertação de mestrado. Escola Politécnica da Universidade de São Paulo. 121p.
  28. SUN, W.; SUN D. A.; FANG, L; LIU, S. (2014) Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique. Journal of Rock Mechanics and Geotechnical Engineering, v.6, p. 48-54.
  29. SYSUEV, V., MAKSIMOV, I., ALEKSEEV, V., & MAKSIMOV, V. (2013). Soil water retention curves based on idealized models. Russian Agricultural Sciences, 39(5), 522-525.
  30. VAN GENUCHTEN, M. T. (1980) A Closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of American Journal, v.44, n.5, p. 893-898.
  31. VILAR, O.M. (2006) Introduccao a mecanica dos solos nao saturados. Notas de aula da disciplina de resistencia ao cisalhamento dos solos. Sao Carlos: EESC/USP – Departamento de Geotecnia, 2006.
  32. WARRICK, A.W.; LOMEN, D.O.; AND YATES, S.R. (1985) A generalized solution to infiltration. Soil Science Society of America Journal, v.49, p.34-38.
  33. YU, CH., AND CH. ZHENG, (2010) HYDRUS: Software for Flow and Transport Modeling in Variably Saturated Media, Software Spotlight, Ground Water, 48(6), 787-791, 2010.