Vol. 21 No. 3 (2019)
Original articles

Modeling water availability on the Piura river basin, Peru, assessing the impacts of climate change

Ricardo F. León Ochoa
National Agrarian La Molina, Lima – Peru
Domingo M. Portuguez Maurtua
National Agrarian La Molina, Lima – Peru
Eduardo A. Chávarri Velarde
National Agrarian La Molina, Lima – Peru

Published 2019-07-26

Keywords

  • Climate Change,
  • CMIP5,
  • General Circulation Models,
  • Hydrological Modeling,
  • SWAT

How to Cite

León Ochoa, R. F. ., Portuguez Maurtua, D. M. ., & Chávarri Velarde, E. A. . (2019). Modeling water availability on the Piura river basin, Peru, assessing the impacts of climate change. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(3), 182-193. https://doi.org/10.18271/ria.2019.476

Abstract

This research evaluated climate change impacts on the streamflow offer in the middle and up-per Piura river basin in Peru using the Soil and Water Assessment Tool (SWAT) by the middle of the 21s century. The SWAT model was calibrated and validated for a period of 23 years (1986 - 2008) with daily weather data at six locations and monthly streamflow data at one location. For future evaluation, the HADGEM2- ES and CSIRO-Mk3-6-0, global climate models (GCM), climate data by Coupled Model Intercomparison Project Phase 5 (CMIP5) RCP4.5 and RCP8.5 of the Intergovernmental Panel on Climate Change (IPCC) were adopted. The future biased data (2025‐2054) were corrected using weather data of baseline period, and downscaled by the statistical method of MarkSim weather generator. The temperature and precipitation in the climate change scenarios projected an average increase of + 2.9°C and 39.3%, respectively, compared to the baseline condition. The future evapotranspiration showed a general tendency to decrease, with a slight increase in the north western region of the basin. In particular, the average trend of monthly streamflow to 2050s, in the four scenarios, indicates an increase of +71.8%, approx. 55.9 m3/s, from October to April with the highest increase in November. Whereas, from May to September, there is a decrease of -66.1%, approx. 12 m3/s, with the largest decrease in July.

 

References

  1. Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. DOI: https://doi.org/10.1016/j.jhydrol.2015.03.027
  2. Abdo, K.S., Fiseha, B.M., Rientjes, T.H.M., Gieske, A.S.M., Haile, A.T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrological Processes. 23, 3661–3669. DOI: https://doi.org/10.1002/hyp.7363
  3. Alam S., Ali M.M., y Islam Z. (2016). Future streamflow of Brahmaputra River basin under synthetic climate change scenarios. Journal of Hydrologic Engineering, 21(11), 05016027. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001435
  4. ANA. (2012). Diagnóstico de la gestión de los recursos hídricos de la cuenca Chira - Piura: Informe principal. Recuperado de: http://repositorio.ana.gob.pe/handle/ANA/1962
  5. Anand, J., Gosain, A.K., y Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 644, 503–519. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.017
  6. Arnold, J., y Fohrer, N. (2005). SWAT 2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 19(3):563-572. DOI: https://doi.org/10.1002/hyp.5611
  7. Birhanu, B.Z., Ndomba, P.M. y Mtalo, F.W. (2007). Application of SWAT Model for Mountainous Catchment. Proceedings of LARS 2007. Catch. Lake Res., 182–187. Recuperado de: http://www.uni-siegen.de/zew/publikationen/volume0607/birhanu.pdf
  8. Fitsum, B. (2015). Characterizing Current and Future Rainfall Variability and its Effect on Wheat and Barley Production in Sinana District, South Eastern Ethiopia (M.Sc. thesis). Haramaya University, Oromia, Etiopía. Recuperado de: https://www.ruforum.org/sites/default/files/Fitsum%20Msc%20thesis%20fina%20for%20submission.pdf
  9. Garcia-Gonzalez, S. E. (2015). Streamflow Response to Land-cover Change in Southern Mexico: Projections of Water Balance in the Tulija River Watershed (M.Sc. thesis). The Pennsylvania State University, Pennsylvania, USA. Recuperado de: https://etda.libraries.psu.edu/files/final_submissions/10853
  10. Ghaffari, G., Keesstra, S., Ghodousi, J., y Ahmadi, H. (2010). SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran. Hydrological Processes, 24(7), pp.892–903. DOI: https://doi.org/10.1002/hyp.7530
  11. IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, DOI: https://doi.org/10.1017/CBO9781107415324
  12. Jones, P.G., y Thornton P.K. (2013). Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agricultural System, 114, 1-5. DOI: https://doi.org/10.1016/j.agsy.2012.08.002
  13. Joo, J., Zhang, A., Li, X., y Zheng, C. (2017). Hydrological responses to climate shifts for a minimally disturbed mountainous watershed in northwestern China. Hydrol. Sci. J. 62, 1440–1455. DOI: https://doi.org/10.1080/02626667.2017.1316851
  14. Li, T., y Gao, Y. (2015). Runoff and sediment yield variations in response to precipitation changes: a case study of Xichuan watershed in the loess plateau, China. WaterSA 7, 5638–5656. DOI: https://doi.org/10.3390/w7105638
  15. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., et al., (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag.259, 698–709. DOI: https://doi.org/10.1016/j.foreco.2009.09.023
  16. Muluneh, G. (2015). Analysis of Past and Future Intra-Seasonal Rainfall Variability and its Implications for Crop Production in the North Eastern Amhara Region, Ethiopia. (M.Sc. thesis). Haramaya University, Oromia, Etiopía. Recuperado de: https://www.ruforum.org/sites/default/files/Muluneh%20final%20MSc%20Thesis.pdf
  17. Neitsch, S., Arnold, J., Kiniry, J., Srinivasan, R., y Williams, J. (2002). Soil and Water Assessment Tool User’s Manual: Version 2000. U.S. Department of Agriculture - Agricultural Research Service, Grassland Soil and Water Research Laboratory and Texas A&M University, Blackland Research and Extension Center, Temple, TX. 2002. Recuperado de: https://swat.tamu.edu/docs/
  18. Neitsch, S., Arnold, J., Kiniry, J.; Srinivasan, R., y Williams, J. (2004). Soil and Water Assessment Tool Theoretical Documentation: Version 2005. Temple, Tex.: USDA-ARS Grassland, Soil and Water Research Laboratory. 2005. Recuperado de: https://swat.tamu.edu/docs/
  19. Ramos, Y., (2014). Estimación del efecto del cambio climático en la precipitación en la costa norte del Perú usando simulaciones de según los modelos climáticos globales (tesis de pregrado). Universidad Nacional Agraria La Molina, Lima, Perú. Recuperado de: http://www.met.igp.gob.pe/publicaciones/2014/tesis_final_yakelyn_ramos.pdf
  20. SENAMHI, Servicio Nacional de Meteorología e Hidrología. (2005). Escenarios del Cambio Climático en el Perú 2004 – 2050. Cuenca del río Piura. Recuperado de: http://siar.regionpiura.gob.pe/admDocumento.php?accion=bajar&docadjunto=216
  21. Srinivasan, R. (2015). Soil and Water Assessment Tool Beginner SWAT Training Manual. Workshop at Spatial Science Laboratory. AgriLife Research. Texas A&M University. Recuperado de: http://www.crs4.it/repository/documents/conferences/swat_2015/introductory_manual_updated_oct._2012.pdf
  22. Tyndall, Centre for Climate Change Research. (2004). New Indicators of Vulnerability and Adaptive Capacity. Technical Report. Recuperado de: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.2300&rep=rep1&type=pdf
  23. Yang N., Men B.-H., y Lin C.-K. (2011). Impact Analysis of Climate Change on Water Resources. Procedia Engineering, 24, 643–648. DOI: https://doi.org/10.1016/j.proeng.2011.11.2710
  24. Yates, D., y Angarita, H. (2014). Developing climate scenarios. Partnering for Adaptation and Resilience - Agua (PARA-AGUA) Project. Perú. University Corporation for Atmospheric Research, acting on behalf of The National Center for Atmospheric Research. AECOM International Development. Recuperado de: http://www.para-agua.net/component/k2/download/47_744e4500606b4afccf1fc7b45c86c971
  25. Zheng, J., Li, G., Han, Z., y Meng, G. (2010). Hydrological Cycle Simulation of An Irrigation District Based on A SWAT model. Mathematical and Computer Modelling, 51(11-12), 1312–1318. DOI: https://doi.org/10.1016/j.mcm.2009.10.036