Effect of Temperature and Stirring Speed in Obtaining the Osmotic Dehydration of Jinger (Zingiber Officinale)
Published 2022-08-25
Keywords
- Osmotic dehydration, solids gain, temperature, stirring speed, ginger.
How to Cite
Abstract
The objective of this research was to evaluate the effect of temperature and agitation speed on weight loss (WeL%), water loss (WaL%) and solids gain (SG%) in the osmotic dehydration of ginger cubes. (Zingiber officinale). The applied parameters were: osmotic solution temperature 26, 36, and 46°C, stirring speed of 30, 50 and 80 rpm, sample/osmotic solution ratio of 1:16 (p/p), sucrose concentration at 60% and experiment time 0, 15, 30, 45, 60, 75, 90, 105 and 120 min. The results showed that the temperature was the parameter that most influenced the WaL%, WeL%, and SG%, compared to the agitation speed it had a lower influence on the WaL%, WeL%, and SG%, this indicates that the high temperatures cause changes in the permeability of the cell membrane of the food, which generates greater transfer. The 26°C and 30 rpm treatment showed a higher diffusivity (De) with 5,20 x 10-4. The 46°C and 30 rpm treatment reported higher moisture losses with 35%, the 26°C and 30 rpm treatment presented an increased pH variation from 6.62 to 5.27, the 36°C and 50 rpm treatment showed a constant acidity of 0.05% and the treatment of 46°C and 80 rpm increase variation in soluble solids concentration to 35.16 °Brix. It was shown that temperature is the parameter that most influenced WaL%, WeL%, and SG%.
References
- Acuña, O., & Torres, A. (2010). Aprovechamiento de las propiedades funcionales del jengibre (Zingiber officinale) en la elaboración de condimento en polvo, infusión filtrante y aromatizante para quema directa. Revista Politécnica, (5), 1-10. http://bibdigital.epn.edu.ec/handle/15000/4343
- Amami, E., Khezami, L., Jemai, A., & Vorobiev, E. (2014). Osmotic dehydration of some agro-food tissue pre-treated by pulsed electric field: Impact of impeller’s Reynolds number on mass transfer and color. Journal of King Saud University - Engineering Sciences, 93-102. https://doi.org/10.1016/j.jksues.2012.10.002
- An, K., Ding, S., Tao, H., Zhao, D., Wang, X., & Hu, Z. W. (2012). Response surface optimization of osmotic dehydration of chinese ginger (Zingiber Officinale Roscoe) Slices. International journal of Food & Science Technology, 1- 7. https://doi.org/10.1111/j.1365-2621.2012.03153.x
- An, K., Tang, D., Wu, J., Fu, M., Wen, J., & Xu, G. X. (2019). Comparison of pulsed vacuum ultrasound osmotic dehydration on drying of chinese finger (Zingiber officinale Roscoe): Drying characteristics, antioxidant capacity, and volatile profiles. Food Science & nutrition, 1-9. https://doi.org/10.1002/fsn3.1103
- AOAC. (2005). Official Methods of Analysis. Eighteenth ed. AOAC international Gaithersburg.
- Ayala-Aponte, A. A., & Giraldo-Cuartas, L. A.-C. (2009). Efecto de la agitación sobre la deshidratación osmótica de pitahaya amarilla (Selenicereus megalanthus s.) empleando soluciones de sacarosa. Scielo, 1-5. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442009000700009
- Barbosa Júnior, J., Cordeiro Mancini, M., & Dupas Hubinger, M. (2013). Mass transfer kinetics and mathematical modelling of the osmotic dehydration of orange-fleshed honeydew melon in corn syrup and sucrose solutions. International Journal of Food Science Technology, 2463-2473. https://doi.org/10.1111/ijfs.12237
- Berk, Z. (2018). Dehydration. Food Process Engineering and Technology, 513–566. https://doi.org/10.1016/B978-0-12-812018-7.00022-1
- Dávila, L., López, L. (2005). Transferencia de Masa en la Deshidratación Osmótica a Vacío de Rodajas de Ananás comosus L. MERR “Piña”. Revista de La Facultad de Ingeniería Industrial, 07-12. https://www.redalyc.org/articulo.oa?id=81680102.
- Espinoza, S. L. (2013). Caracterizacion fisicoquimica del extracto espectorante de ajo (Allium sativum L.), Kion (Zingiber officinale L.), Eucalipto (Eucaliptus globulus L.) y linaza (Linum usitatissimun L.). repositorio.uncp.edu.pe.
- Fan, K., Zhang, M., & Bhandari, B. (2019). Osmotic-ultrasound dehydration pretreatment improves moisture adsorption isotherms and water state of microwave-assisted vacuum fried purple-fleshed sweet potato slices. Food and Bioproducts Processing, 154-164. https://doi.org/10.1016/j.fbp.2019.03.011
- Ferrari, C., & Hubinger, M. (2008). Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. International Journal of Food Science & Technology, 2065–2074. http://doi:10.1111/j.1365-2621.2008.01824.x
- Garcia, R. M., & Medina, L. D. (2019). Evaluación de la cinética de la deshidratación osmótica de guayaba (Psidium guajava L.) para alargar su vida útil y mejorar las características sensoriales. repositorio.unsa.edu.pe, 1,137. http://repositorio.unsa.edu.pe/handle/UNSA/10783
- García-Toledo, J., Ruiz-López, I., Martínez-Sánchez, C., Rodríguez-Miranda, J., Carmona-García, R., Torruco-Uco, J., Herman-Lara, E. (2015). Effect of osmotic dehydration on the physical and chemical properties of Mexican ginger (Zingiber officinale var. Grand Cayman). Journal of Food,1-9(2). https://doi.org/10.1080/19476337.2015.1039068
- Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., & Mohamed Ahmed, I. A. (2020). Total, phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT - FoodScience and Technology, 109354. https://doi.org/10.1016/j.lwt.2020.109354
- Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., & Mohamed Ahmed, I. A. (2020). Total, phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT - FoodScience and Technology, 109354. https://doi.org/10.1016/j.lwt.2020.109354
- Hawkes J, Flink JM. 1978. Osmotic concentration of fruit slices prior to freeze dehydration. J Food Pro Preser 2:265–84. https://doi.org/10.1111/j.1745-4549.1978.tb00562.x
- Jain, V. R. (2016). A review on osmotic dehydration of fruits and vegetables: an integrated approach. Journal of Food Process Engineering, 1-22. https://doi.org/10.1111/jfpe.12440
- Limache, E. (2017). Influencia de la Temperatura y Tiempo de Secado en la Extracción del Aceite Esencial de Jengibre (Zingiber officinale) Variedad Amarillo Jamaiquino Ecotipo de Junín. Tesis, 57-97.
- MINAGRI. (6 de enero de 2021). Ministerio de Desarrollo Agrario y Riego. Obtenido de https://www.gob.pe/institucion/midagri/noticias/323582-peru-se-consolido-el-2020-como-el-cuarto-exportador-mundial-de-jengibre
- Mosquera-Vivas, E., Ayala-Aponte, A., & Serna-Cock, L. (2019). Ultrasonido y Deshidratación Osmótica como Pretratamientos a la Liofilización de Melón (Cucumis melo L.). Información Tecnología. doi: https://doi.org/10.4067/S0718-07642019000300179
- Mundada, M., Hathan, B., & Maske, S. (2010). Mass Transfer Kinetics during Osmotic Dehydration of Pomegranate Arils. Institute of Food Technologists, 32-39. https://doi.org/10.1111/j.1750-3841.2010.01921.x
- NOP – USA, USDA Organic Standards 7 CFR 205, Reglamentos Orgánicos Estadounidenses, Actualizados al 3 de diciembre de 2013. 7 CRF Parte 205 – Programa Orgánico Nacional. Pg 22 – 37
- Osae, R., Zhou, C., Xu, B., Tchabo, W., Tahir, H. E., & Ma, A. T. (2019). Effects of ultrasound, osmotic dehydration; and osmosonication pretreatments on bioactive compounds, chemical characterization; enzyme inactivation, color, and antioxidant activity of dried ginger slices. Journal of food biochemistry, 1-14. doi: https://doi.org/10.1111/jfbc.12832
- Oscco, J. V. (2018). Cinética, coeficiente de difusividad y contenido de antocianinas en la deshidratación osmótica de frambuesa heritage (Rubus idaeus). https://doi.org/10.37292/riccva.v4i2.147
- Pereira de Siqueira, L., Asfora Sarubbo, L., Sakugawa Shinohara, N., Sarmento Valencia, M., Santos Cortez, N., & Cardoso Andrade, S. (2019). Optimization of the osmotic dehydration of ginger. Food Technology, 1678-4596. https://doi.org/10.1590/0103-8478cr20170430.
- Phisut, N. (2012). Mini Review Factors affecting mass transfer during osmotic dehydration of ffruits. International food Research Journal, 1-12. http://www.ifrj.upm.edu.my/19%20(01)%202011/(2)IFRJ-2011-168%20Phisut.pdf.
- Porciuncula, B. D., Zotarelli, M., Carciofi, B., & Laurindo, J. (2013). Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. Journal of Food Engineering, 490-496. doi: https://doi.org/10.1016/j.jfoodeng.2013.06.011
- Rocca, P. & Mascheroni, R. (2010). Modelos empíricos en la deshidratación osmótica de papas. Universidad tecnológica Nacional, Facultad Regional Buenos Aires. La Plata, Argentina. 2(1), 57-66.
- Rojas, A. P. (2017). Evaluación de las características nutricionales del confitado de jengibre (zengiber offinale) orgánico obtenido mediante el método de osmodeshidratacion. repositorio.uncp.edu.pe, 1,166(70).
- Sanchez, Y. A., & Romero, Y. A. (2009). Elaboración de un producto soluble a base de jengibre (Zingiber Officinale Roscoe) Saborizada con limoncillo (Cymbopogon Citratus). (24), 1-4. 98 http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/1793/66396O12.pdf;sequence=1
- Silva, K., Fernandes, M., & Mauro, M. (2014). Osmotic Dehydration of Pineapple with Impregnation of Sucrose, Calcium, and Ascorbic Acid. Food and Bioprocess Technology volume, 385–397. https://doi.org/10.1007/s11947-013-1049-0
- Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2021). Reduction of oil uptake with osmotic dehydration and coating pre-treatment in microwave-assisted vacuum fried potato chips. Food Bioscience, 100825. https://doi.org/10.1016/j.fbio.2020.100825
- Tonon, R., Baroni, A., & Hubinger, M. (2007). Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering, 509–517. https://doi:10.1016/j.jfoodeng.2007.03.00