Biometric Patterns of Orestias (Teleostei: Cyprinodontidae) and Their Relationship with Environmental Variables in High-Andean Lakes and Wetlands of Cusco
Published 2025-12-31
Keywords
- Orestias ,
- Allometry,
- High-Andean lakes,
- Cusco
Copyright (c) 2025 Jack Rodriguez, Aldemar A. Acevedo, Marco A. Méndez

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
The biometric traits of the genus Orestias and their relationship with physicochemical variables were characterized across nine high-Andean lakes and wetlands in the department of Cusco, Peru, through the sampling of 141 individuals between 2022 and 2023. Specimens were manually captured, euthanized with tricaine methanesulfonate, and preserved for analysis; total length and body weight were measured, while hydrogen potential, temperature, electrical conductivity, salinity, total dissolved solids, dissolved oxygen, and altitude were recorded at each site. An allometric model was fitted to the length–weight relationship, a principal component analysis (PCA) was applied to physicochemical variables, and a similarity network was constructed integrating geographic distances and environmental similarity. The length–weight relationship was adjusted to W = 0.00000889 · L^3.1030, with a determination coefficient of 0.9219, indicating slight positive allometry (exponent 3.103). The first two components explained 46.4% and 20.7% of the variance, contrasting systems with high conductivity and dissolved solids against higher-altitude systems with greater hydrogen potential and dissolved oxygen; a second axis was associated with salinity and temperature gradients. The network identified an interconnected core (Lucre–Huacarpay, Huaypo, Pomacanchi, Huasao) and peripheral high-altitude sites (Sibinacocha, Qoricocha). Results indicated that hydrological connectivity and environmental filtering modulated Orestias biometric variation. Based on these findings, applied measures were proposed for monitoring and conserving the studied populations.
References
- Araya, V. I. (2024). Desentrañando la historia evolutiva de la especie Orestias agassii: un estudio filogeográfico considerando su rango de distribución actual [Tesis de maestría, Universidad de Chile]. Universidad de Chile, Facultad de Ciencias.
- Arratia, G., Peñafiel, N., & Quezada-Romegialli, C. (2017). Phylogenetic relationships and evolutionary history of the genus Orestias (Teleostei: Cyprinodontidae). Journal of Fish Biology, 91(3), 721–740.
- Bagenal, B., & Tesch, F. (1978). Age and growth. En T. B. Bagenal (Ed.), Methods for assessment of fish production in freshwaters (3rd ed., pp. 101–136). Blackwell Scientific Publications.
- Carlander, K. (1969). Handbook of freshwater fishery biology (Vol. I). The Iowa State University Press.
- Da-Costa, M., & Gerson, F. (2003). Length-weight relationship and condition factor of Micropogonias furnieri (Desmarest) (Perciformes, Sciaenidae) in the Sepetiba Bay, Rio de Janeiro State, Brazil. Revista Brasileira de Zoologia, 20(4), 685–690. https://doi.org/10.1590/S0101-81752003000400022
- De la Barra, E., Maldonado, M., Vila, I., Ibáñez, C., Jégu, M., & Carvajal-Vallejos, F. M. (2020). Resumen del conocimiento sobre la biología y taxonomía del género Orestias Valenciennes 1839 (Actinopterygii, Cyprinodontiformes). Neotropical Hydrobiology and Aquatic Conservation, 1(2), 185–224.
- Eigenmann, C. H. (1920). On the Genera Orestias and Empetrichthys. Copeia, (89), 103–106.
- Eigenmann, C. H., & Allen, W. R. (1942). Fishes of Western South America. University of Indiana Press.
- Froese, R. (2006). Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 241–253. https://doi.org/10.1111/j.1439-0426.2006.00805.x
- García-Ávila, F., Loja-Suco, P., Sigüenza-Jeton, C., Jiménez-Ordoñez, M., Valdiviezo-Gonzáles, L., Cabello-Torres, R., & Avilés-Añazco, A. (2023). Evaluation of the water quality of a high Andean lake using different quantitative approaches. Ecological Indicators, 154, 110924. https://doi.org/10.1016/j.ecolind.2023.110924
- Guerrero, J., Vila, I., & Poulin, E. (2015). Morphological variation and taxonomic revision of Orestias from Chilean Altiplano lakes. Zootaxa, 3931(2), 211–228.
- Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy), 11–15.
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Taylor, S. E., & the NumPy community. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
- Herrera-Pérez, J., Parra, J. L., Restrepo-Santamaría, D., & Jiménez-Segura, L. F. (2019). The influence of abiotic environment and connectivity on the distribution of diversity in an Andean fish fluvial network. Frontiers in Environmental Science, 7, 9. https://doi.org/10.3389/fenvs.2019.00009
- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
- Lauzanne, L. (1992). The Orestias of Lake Titicaca. En C. Dejoux & A. Iltis (Eds.), Lake Titicaca (pp. 405–419). Kluwer Academic Publishers.
- Legendre, P., & Legendre, L. (2012). Numerical ecology (Vol. 24). Elsevier.
- McKinney, W. (2010). Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference, 51–56. https://doi.org/10.25080/Majora-92bf1922-00a
- Ortega, H., & Hidalgo, M. (2008). Freshwater fishes and aquatic habitats in Peru: Current knowledge and conservation. Aquatic Ecosystem Health & Management, 11(3), 257–271.
- Parenti, L. R. (1981). A phylogenetic and biogeographic analysis of Cyprinodontiformes. Bulletin of the American Museum of Natural History, 168, 335–557.
- Parenti, L. R. (1984). A taxonomic revision of the Andean killifish genus Orestias (Cyprinodontiformes, Cyprinodontidae). Bulletin of the American Museum of Natural History, 178(2), 107–214.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
- Rojas, P., Pardo, R., & Vila, I. (2021). Length-weight relationships native fish of Southern Altiplano: Lauca National Park, Chile. Journal of Freshwater Ecology, 36(1), 285–291. https://doi.org/10.1080/02705060.2021.1971782
- Sinnott, R. W. (1984). Virtues of the Haversine. Sky and Telescope, 68, 159.
- Tchernavin, V. V. (1944). A revision of the subfamily Orestiinae. Proceedings of the Zoological Society of London, 114(1–2), 140–233. https://doi.org/10.1111/j.1096-3642.1944.tb00218.x
- van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.
- Vila, I., Scott, S., & Poulin, E. (2013). Phylogenetic and biogeographic history of Orestias species from the high-altitude lakes of South America. Journal of Biogeography, 40(5), 985–995.
- Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
