Concentración celular y biomasa seca en tres especies de microalgas marinas: Chlorella vulgaris, Nannochloropsis oculata y Tetraselmis striata
Publicado 2020-08-30
Palabras clave
- crecimiento,
- cultivo,
- microalgas,
- rendimiento
Derechos de autor 2020 Sheda Méndez Ancca, Yesica Alvarez, Luis E. Sosa y Yhordan. G. Vizcarra
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
El objetivo del estudio fue determinar la concentración celular y la biomasa seca en tres species de microalgas marinas: Chlorella vulgaris, Nannochloropsis oculata y Tetraselmis striata. Las cepas se suministraron por el Laboratorio Costero de Ilo perteneciente al Instituto del Mar del Perú (IMARPE) y luego, se acondicionaron las microalgas para ser cultivadas en medio semicontrolado. Las fases del cultivo de microalgas consistieron en el cepario, inicial, intermedia y masiva. El orden de máxima concentración celular (cel/mL) para las microalgas fue: Nannochloropsis oculata > Chlorella vulgaris > Tetraselmis striata donde N. oculata representó 7,63 veces superior a T. striata. En el caso de la biomasa, el orden correspondió a: C. vulgaris > T. striata > N. oculata existiendo 1,32 g de diferencia. Se concluyó que, la especie de microalga Chlorella vulgaris indicó la mayor ventaja para usarse en la acuicultura comparativamente con las otras dos especies.
Referencias
- Anthony, J., Sivashankarasubbiah, K.T., Thonthula, S., Rangamaran, V.R., Gopal, G. & Ramalingam, K. (2018). An efficient method for the sequential production of lipid and carotenoids from the Chlorella growth Factor-extracted biomass of Chlorella vulgaris. J Appl Phycol; 30, 2325-2335. Doi: 10.1007/s10811-018-1430-5
- Aratboni, H.A., Rafiei, N., Garcia, G.R., Alemzadeh, A. & Morones, R.J.R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Factories; 18(1), 178-19. Doi: /10.1186/s12934-019-1228-4
- Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv; 25(3), 294-306. Doi: 10.1016/j.biotechadv.2007.02.001
- de Vera, C.R., Crespín, G.D., Daranas, A.H., Looga, S.M., Lillsunde, K.E., Tammela, P., Perälä, M., Hongisto, V., Virtanen, J., Rischer, H., Muller, C.D., Norte, M., Fernández, J.J. & Souto, M.L. (2018). Marine microalgae: promising source for new bioactive compounds. Mar Drugs; 16, 1-12. Doi: 10.3390/md16090317
- Emparan, Q., Harun, R. & Danquah, M.K. (2019). Role of phycoremediation for nutrient removal from wastewaters: a review. Appl Ecol Environ Res; 17, 889-915. Doi: 10.15666/año/1701_889915
- Escrivani, G.R., Luna, A.S. & Rodrigues, T.A. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A Review. J. Anal. Appl. Pyrolysis; 129, 134-149. Doi: 10.1016/j.jaap.2017.11.019
- Gollakotaa, A.R.K., Kishore, N. & Sai, G. (2018). A review on hydrothermal liquefaction of biomass. Renew Sustain Energy Rev; 81, 1378-1392. Doi: 10.1016/j.rser.2017.05.178
- Gong, Y., Guterres, H.A.D.S., Huntley, M., Sørensen, M. & Kiron, V. (2018). Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. When fed to Atlantic salmon, Salmo salar. Aquac Nutr; 24, 56-64. Doi: 10.1111/anu.12533
- Günerken, E., d'Hondt, E., Eppink, M., Garcia-Gonzalez, L., Elst, K. & Wijffels, R. (2015). Cell disruption for microalgae biorefineries. Biotechnol Adv; 33(2), 243-260. Doi: 10.1016/j.biotechadv.2015.01.008
- Instituto del Mar del Perú: IMARPE. (2008). Condicionamiento de reproductores y obtención de semillas de concha de abanico Argopectenpurpuratus (lamarck, 1819), Informe anual. Ilo, Moquegua.
- Kasanah, N., Amelia, W., Mukminin, A. & Triyanto, I.A. (2018). Antibacterial activity of Indonesian red algae Gracilaria edulis against bacterial fish pathogens and characterization of active fractions. Nat Prod Res; 6419, 1-5. Doi: 10.1080/14786419.2018.1471079
- Kent, M., Welladsen, H.M., Mangott, A. & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One; 10, 1-14. Doi: 10.1371/journal.pone.0118985
- Kumar, P.K., Krishna, S.V., Verma, K., Pooja, K., Bhagawan, D., Srilatha, K. & Himabindu, V. (2018). Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. J. Microbiol. Methods; 153, 108-117. Doi: 10.1016/j.mimet.2018.09.014
- Luangpipat, T. & Chisti, Y. (2017). Biomass and oil production by Chlorella vulgaris and four other microalgae – Effects of salinity and other factors. Journal of Biotechnology; 257, 47-57. Doi: 10.1016/j.jbiotec.2016.11.029
- Pinheiro, S., Roberta, L., Gonzaga, N., Neto, R., Farias, A., Luis, A., Holanda, B., Lopes, D., Sousa, M., Guadalupe, P., Alexandra, E. & Holanda, C. Shiniti, (2018). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P. W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol; 107, 1320-1329. Doi: 10.1016/j.ijbiomac. 2017.09.116.
- Postma, P., Miron, T., Olivieri, G., Barbosa, M., Wijffels, R. & Eppink, M. (2015). Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour Technol; 184, 297-304. Doi: 10.1016/j.biortech.2014.09.033
- Priyadarshani, I. & Rath, B. (2012). Commercial and industrial applications of micro algae–a review, J. Algal Biomass Util; 3, 89-100.
- Rizwan, M., Mujtaba, G., Memon, S.A., Lee, K. & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable Sustainable Energy Rev; 92, 394-404. Doi: 10.1016/j.rser.2018. 04.034
- Saadaoui, I., Sedky, R., Rasheed, R., Bounnit, T., Almahmoud, A., Elshekh, A., Dalgamouni, T., Jmal, A.L., Das, K. & P. Al Jabri, H. (2018). Assessment of the algae-based biofertilizer influence on date palm (Phoenix dactylifera L.) cultivation. J Appl Phycol; 2, 1-7, Doi: 10.1007/s10811-018-1539-6
- Safi, C., Frances, C., Ursu, A.V., Laroche, C., Pouzet, C., Vaca, G.C. & Pontalier, P.Y. (2015). Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Res; 8, 61-68. Doi: 10.1016/2Fj.algal.2015.01.002
- Sal, L. & Rosa, M.R. (2015). Efecto de dietas con tres microalgas bentónicas en el crecimiento y supervivencia post larval del Loxechinus albus, Erizo Verde. Tesis de Diploma. Universidad Nacional de Moquegua., Moquegua, Perú. http://repositorio.unam.edu.pe/handle/UNAM/39
- Saravana, M., Mohan, G., Ramakrishnan, T., Mani, V. & Achary, A. (2018). Protective effect of crude sulphated polysaccharide from Turbinaria ornata on isoniazid rifampicin induced hepatotoxicity and oxidative stress in the liver, kidney and brain of adult Swiss albino rats. Indian J Biochem Biophys; 55, 237–244.
- Shafiei, A.R., Karimi, K., Wijffels, R.H, van den Berg, C. & Eppink, M. (2020). Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresource Technology; 309, 1-34. Doi: 10.1016/j.biortech.2020.123321
- ’t Lam, G., Vermuë, M., Eppink, M., Wijffels, R. & Van Den Berg, C. (2018). Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol; 36(2), 216-227. Doi: 10.1016/j.tibtech.2017.10.011
- Usoltseva, R.V., Anastyuk, S.D., Ishina, I.A., Isakov, V.V., Zvyagintseva, T.N., Duc, P., Zadorozhny, P.A., Dmitrenok, P.S. & Ermakova, S.P. (2018). Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr Polym; 184, 260-268. Doi: 10.1016/j.carbpol.2017.12.071
- Velazquez, L.J., Rodríguez, J.R.M., Colla, L.M., Saenz, G.A., Cervantes, C.E., Aguilar, C.N. & Ruiz, H.A. (2018). Microalgal biomass pretreatment for bioethanol Production: a review. Biofuel Res J; 17, 780–791. Doi: 10.18331/BRJ2018.5.1.5
- Wahidin, S., Idris, A., Yusof, NM, Kamis, NHH & Shaleh, SRM (2018). Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Conversion and Management; 171, 1397-1404. Doi: 10.1016/j.enconman.2018.06.083
- Wang, J., Jin, W., Hou, Y., Niu, X., Zhang, H. & Zhang, Q. (2013). Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int J Biol Macromol; 57, 26-29. Doi: 10.1016/j.ijbiomac.2013. 03.001
- Ying, S.Y., Jing, Z.W., Hou, H., Wang, Lin, G.G., Xia, S.Z. & Fang, P.Y. (2018). Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa. Ecotoxicol Environ Saf; 157, 61-66. Doi: 10.1016/j.ecoenv.2018.03.051