Vol. 25 Núm. 3 (2023)
Artículo original

Regiones Altoandinas y su vulnerabilidad socioeconómica: caso zona urbana de Puno

Nancy Zevallos
Universidad Nacional del Altiplano, Puno, Perú | Universidad Nacional Federico Villarreal, Lima, Perú

Publicado 2023-08-08

Palabras clave

  • Exposición, resiliencia, Proceso Analítico Jerárquico, evaluación de la vulnerabilidad

Cómo citar

Zevallos, N. (2023). Regiones Altoandinas y su vulnerabilidad socioeconómica: caso zona urbana de Puno. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 25(3), 179-189. https://doi.org/10.18271/ria.2023.543

Resumen

En los últimos tiempos se han incrementado los riesgos de desastres causados por eventos naturales a consecuencia del cambio climático. La magnitud de un desastre a consecuencia del impacto de un peligro natural sobre un sistema humano depende no solo del tipo e intensidad del peligro, depende también de las condiciones socioeconómicas de la comunidad. El objetivo de esta investigación fue determinar el nivel de vulnerabilidad socioeconómica a los desastres naturales en la zona urbana de la ciudad de Puno, región altoandina del sur del Perú. Esto se logró mediante el uso de la técnica del Proceso Analítico Jerárquico (AHP) en combinación con los sistemas de información geográfica (SIG). Se realizó un cuestionario semiestructurado a una muestra aleatoria de 256 personas. Se recopiló datos de vulnerabilidad a cinco tipos distintos de peligros a los cuales está expuesto la población: inundaciones, erosión, caída de rocas, deslizamientos y suelos inestables. Se trabajó con catorce indicadores en las dimensiones de exposición, fragilidad y resiliencia. Como resultado se obtiene un mapa de vulnerabilidad socioeconómica, mostrando niveles de vulnerabilidad correspondiente a una alta y muy alta vulnerabilidad de las zonas periféricas de la zona de estudio. Los hallazgos de esta investigación serán útiles para que los encargados de la formulación de políticas en gestión de riesgo de desastres tomen decisiones informadas para reducir la vulnerabilidad e incrementar de la resiliencia de la población altoandina de Puno.

Referencias

  1. Apotsos, A. (2019). Mapping relative social vulnerability in six mostly urban municipalities in South Africa. Applied Geography, 105, 86–101. https://doi.org/10.1016/j.apgeog.2019.02.012
  2. Arvin, M., Beiki, P., Hejazi, S. J., Sharifi, A., & Atashafrooz, N. (2023). Assessment of infrastructure resilience in multi-hazard regions: A case study of Khuzestan Province. International Journal of Disaster Risk Reduction, 88. https://doi.org/10.1016/j.ijdrr.2023.103601
  3. Assis Dias, M. C. de, Saito, S. M., Alvalá, R. C. dos S., Seluchi, M. E., Bernardes, T., Camarinha, P. I. M., Stenner, C., & Nobre, C. A. (2020). Vulnerability index related to populations atrisk for landslides in the Brazilian Early Warning System (BEWS). International Journal of Disaster Risk Reduction, 49. https://doi.org/10.1016/j.ijdrr.2020.101742
  4. Aversa, M., Rotger, D., & Senise, F. (2020). Living in the margins of risk. Flood and resilience in la Plata. In Bitacora Urbano Territorial (Vol. 30, Issue 3, pp. 219–232). Universidad Nacional de Colombia. https://doi.org/10.15446/BITACORA.V30N3.86792
  5. Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., Ibrahim, Z. Z., Roberts, D., Kerr, R. B., Poertner, H. O., Pelling, M., Djalante, R., Garschagen, M., Leal Filho, W., Guha-Sapir, D., & Alegría, A. (2022). Understanding human vulnerability to climate change: A global perspective on index validation for adaptation planning. Science of the Total Environment, 803. https://doi.org/10.1016/j.scitotenv.2021.150065
  6. Boulange, B., & Aquize Jaen, E. (1981). MorphoEogie, hydrographie et climatologie du lac Titicaca et de son bassin versant(l). Rev. Hydrobiol. Trop., 14(4), 269–287. https://horizon.documentation.ird.fr/exldoc/pleins_textes/cahiers/hydrob-tr
  7. Cardona, O. (2010). La necesidad de pensar de manera holística los conceptos de vulnerabilidad y riesgo “Una Crítica y una Revisión Necesaria para la Gestión.” https://www.desenredando.org/public/articulos/2003/rmhcvr/rmhcvr_may-08-2003.pdf
  8. Choi, E., & Song, J. (2022). Clustering-based disaster resilience assessment of South Korea communities building portfolios using open GIS and census data. International Journal of Disaster Risk Reduction, 71. https://doi.org/10.1016/j.ijdrr.2022.102817
  9. Cutter, S. L. (2009). Social Science Perspectives on Hazards and Vulnerability Science. In Geophysical Hazards (pp. 17–30). Springer Netherlands. https://doi.org/10.1007/978-90-481-3236-2_2
  10. Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2012). Social vulnerability to environmental hazards. Hazards Vulnerability and Environmental Justice, 143–160. https://doi.org/10.1111/1540-6237.8402002
  11. Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20. https://doi.org/10.1016/j.rsase.2020.100379
  12. Dilshad, T., Mallick, D., Udas, P. B., Goodrich, C. G., Prakash, A., Gorti, G., Bhadwal, S., Anwar, M. Z., Khandekar, N., Hassan, S. M. T., Habib, N., Abbasi, S. S., Syed, M. A., & Rahman, A. (2019). Growing social vulnerability in the river basins: Evidence from the Hindu Kush Himalaya (HKH) Region. Environmental Development, 31, 19–33. https://doi.org/10.1016/j.envdev.2018.12.004
  13. Eini, M., Kaboli, H. S., Rashidian, M., & Hedayat, H. (2020). Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. International Journal of Disaster Risk Reduction, 50. https://doi.org/10.1016/j.ijdrr.2020.101687
  14. Fatemi, F., Ardalan, A., Aguirre, B., Mansouri, N., & Mohammadfam, I. (2017). Social vulnerability indicators in disasters: Findings from a systematic review. In International Journal of Disaster Risk Reduction (Vol. 22, pp. 219–227). Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2016.09.006
  15. Fekete, A., & Rufat, S. (2023). Should everyone in need be treated equally? A European survey of expert judgment on social vulnerability to floods and pandemics to validate multi-hazard vulnerability factors. International Journal of Disaster Risk Reduction, 85. https://doi.org/10.1016/j.ijdrr.2023.103527
  16. Gaillard, J. C. (2010). Vulnerability, capacity and resilience: Perspectives for climate and development policy. Journal of International Development, 22(2), 218–232. https://doi.org/10.1002/jid.1675
  17. Gaillard, J. C. (2019). Disaster studies inside out. Disasters, 43(S1), S7–S17. https://doi.org/10.1111/disa.12323
  18. Ha-Mim, N. M., Rahman, M. A., Hossain, M. Z., Fariha, J. N., & Rahaman, K. R. (2022). Employing multi-criteria decision analysis and geospatial techniques to assess flood risks: A study of Barguna district in Bangladesh. International Journal of Disaster Risk Reduction, 77. https://doi.org/10.1016/j.ijdrr.2022.103081
  19. Hejazi, S. J., Sharifi, A., & Arvin, M. (2022). Assessment of social vulnerability in areas exposed to multiple hazards: A case study of the Khuzestan Province, Iran. International Journal of Disaster Risk Reduction, 78. https://doi.org/10.1016/j.ijdrr.2022.103127
  20. Hofflinger, A., Somos-Valenzuela, M. A., & Vallejos-Romero, A. (2019). Response time to flood events using a social vulnerability index (ReTSVI). Natural Hazards and Earth System Sciences, 19(1), 251–267. https://doi.org/10.5194/nhess-19-251-2019
  21. Hunt, J. C. R., Aktas, Y. D., Mahalov, A., Moustaoui, M., Salamanca, F., & Georgescu, M. (2017). Climate change and growing megacities: Hazards and vulnerability. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(6), 314–326. https://doi.org/10.1680/jensu.16.00068
  22. IPCC. (2014). Annex II: Glossary. http://danida.vnu.edu.vn/cpis/files/IPCC/syr/pdf/AR5_SYR_FINAL_Glossary.pdf
  23. IPCC, Pörtner, H.-O., Roberts, M., Tignor, E., Poloczanska, k, Mintenbeck, A., Alegría, M., Craig, S., Langsdorf, S., Löschke, V., Möller, O., & Okem, B. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Jean. https://doi.org/10.1017/9781009325844.002
  24. Kalaycıoğlu, M., Kalaycıoğlu, S., Çelik, K., Christie, R., & Filippi, M. E. (2023). An analysis of social vulnerability in a multi-hazard urban context for improving disaster risk reduction policies: The case of Sancaktepe, İstanbul. International Journal of Disaster Risk Reduction, 91. https://doi.org/10.1016/j.ijdrr.2023.103679
  25. Kashyap, S., & Mahanta, R. (2021). Socioeconomic Vulnerability to Urban Floods in Guwahati, Northeast India: An Indicator-Based Approach. In Economic Effects of Natural Disasters (pp. 457–475). Elsevier. https://doi.org/10.1016/b978-0-12-817465-4.00027-3
  26. Llorente-Marrón, M., Díaz-Fernández, M., Méndez-Rodríguez, P., & Arias, R. G. (2020). Social vulnerability, gender and disasters. The case of Haiti in 2010. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/SU12093574
  27. Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117. https://doi.org/10.1016/j.geoforum.2017.09.008
  28. Mileti, D. (1999). Disasters by Design: A Reassessment of Natural Hazards in the United States. Joseph Henry Press. https://doi.org/10.17226/5782
  29. Nejat, A., Solitare, L., Pettitt, E., & Mohsenian-Rad, H. (2022). Equitable community resilience: The case of Winter Storm Uri in Texas. International Journal of Disaster Risk Reduction, 77. https://doi.org/10.1016/j.ijdrr.2022.103070
  30. Niazi, I. U. H. K., Rana, I. A., Arshad, H. S. H., Lodhi, R. H., Najam, F. A., & Jamshed, A. (2022). Psychological resilience of children in a multi-hazard environment: An index-based approach. International Journal of Disaster Risk Reduction, 83. https://doi.org/10.1016/j.ijdrr.2022.103397
  31. Norazam, A. S. (2018). Resilient Health Infrastructure: Strengthening hospitals’ capacity to respond effectively during disasters and crises. Procedia Engineering, 212, 262–269. https://doi.org/10.1016/j.proeng.2018.01.034
  32. Ojo, A., Papachristodoulou, N., & Ibeh, S. (2018). The Development of an Infrastructure Quality Index for Nigerian Metropolitan Areas Using Multivariate Geo-Statistical Data Fusion. Urban Science, 2(3), 59. https://doi.org/10.3390/urbansci2030059
  33. Petraroli, I., & Baars, R. (2022). To be a woman in Japan: Disaster vulnerabilities and gendered discourses in disaster preparedness in Japan. International Journal of Disaster Risk Reduction, 70. https://doi.org/10.1016/j.ijdrr.2021.102767
  34. Radwan, F., Alazba, A. A., & Mossad, A. (2019). Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67(1), 215–229. https://doi.org/10.1007/s11600-018-0233-z
  35. Roncancio, D. J., Cutter, S. L., & Nardocci, A. C. (2020). Social vulnerability in Colombia. International Journal of Disaster Risk Reduction, 50. https://doi.org/10.1016/j.ijdrr.2020.101872
  36. Saaty, T. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (McGraw-Hill International Book Company, Ed.).
  37. Shaji, J. (2021). Evaluating social vulnerability of people inhabiting a tropical coast in Kerala, south west coast of India. International Journal of Disaster Risk Reduction, 56. https://doi.org/10.1016/j.ijdrr.2021.102130
  38. Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. In Environmental Research Communications (Vol. 1, Issue 5). Institute of Physics. https://doi.org/10.1088/2515-7620/ab24ed
  39. Sztorch, L., Gicquel, V., & Desenclos, J. (1989). The Relief Operation in Puno District,Peru, after the 1986 Floods ofLake Titicaca. Disasters, 13(1), 33–43. https://doi.org/10.1111/j.1467-7717.1989.tb00693.x
  40. Tran, H., Nguyen, Q., & Kervyn, M. (2017). Household social vulnerability to natural hazards in the coastal Tran Van Thoi District, Ca Mau Province, Mekong Delta, Vietnam. Journal of Coastal Conservation, 21(4), 489–503. https://doi.org/10.1007/s11852-017-0522-8
  41. Travieso, A. C., Martínez, O. F., Hernández, M. L., & Morales, J. C. (2023). Comprehensive risk management of hydrometeorological disaster: A participatory approach in the metropolitan area of Puerto Vallarta, Mexico. International Journal of Disaster Risk Reduction, 87. https://doi.org/10.1016/j.ijdrr.2023.103578
  42. Wilches, G. (1989). Desastres, ecologismo y formación profesional. In SENA, Popayán.
  43. Yu, I. (2022). Development and application of a model for assessing climate-related disaster risk. International Journal of Disaster Risk Reduction, 81. https://doi.org/10.1016/j.ijdrr.2022.103218
  44. Zhang, G., Feng, W., Lei, Y., & Wang, S. (2022). Generation and evolution mechanism of systemic risk (SR) induced by extreme precipitation in Chinese Urban system: A case study of Zhengzhou “7 20” incident. International Journal of Disaster Risk Reduction, 83. https://doi.org/10.1016/j.ijdrr.2022.103401