Vol. 27 (2025): Publicación continua
Artículo original

Características fisicoquímicas y bacteriológicas de un arroyo urbano altoandino: centro poblado Salcedo, Puno, Perú

Humberto Peñaranda Barra
Programa de Ecología, Facultad de Ciencias Biológicas, Universidad Nacional del Altiplano Puno
Alfredo Loza-Del Carpio
Instituto de Investigación en Ciencias Ambientales, Salud y Biodiversidad - IICASB, Universidad Nacional del Altiplano Puno
Jesús Miranda Mamani
Programa de Ecología, Facultad de Ciencias Biológicas, Universidad Nacional del Altiplano Puno
Margot Reyes Orihuela
Laboratorio de Ecología Acuática, Universidad Nacional del Altiplano Puno

Publicado 30-09-2025

Palabras clave

  • agroecosistema,
  • Arequipa,
  • invasora,
  • malas hierbas

Cómo citar

Peñaranda Barra, H., Loza-Del Carpio, A., Miranda Mamani, J., & Reyes Orihuela, M. (2025). Características fisicoquímicas y bacteriológicas de un arroyo urbano altoandino: centro poblado Salcedo, Puno, Perú. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 27, e27710. https://doi.org/10.18271/ria.2025.710

Resumen

Las malezas son un problema omnipresente y costoso para los agricultores de los países en desarrollo, son consideradas plantas oportunistas y no deseadas que crecen en los campos de cultivo, afectando negativamente el rendimiento productivo. En el Perú, los estudios de la diversidad de especies y distribución de las malezas que se encuentran en la región andina son escasos. En este trabajo contribuimos con el conocimiento de las malezas presentes en los cultivos del distrito de Characato. Para ello, se colectaron malezas que crecen junto a las plantas cultivadas, se analizaron ejemplares de herbario para la identificación y el origen geográfico de las especies se estableció a través de la bibliografía especializada y base de datos digitales. Se identificaron 67 especies de malezas, agrupadas en 51 géneros y 19 familias, de las cuales 60 especies correspondieron a Eudicotiledóneas y 7 especies a Monocotiledóneas; la familia Brassicaceae tiene la mayor diversidad con 9 especies, seguida de Asteraceae (8), Poaceae (7), Solanaceae (6), Amaranthaceae (5), Fabaceae (4), Plantaginaceae (4) entre otras familias. Del total de las especies reportadas, 30 (44.8%) son nativas y 37 (55.2%) introducidas. Finalmente, se encontraron 5 especies reconocidas globalmente por su impacto negativo en la agricultura.

Referencias

  1. Andrio, D., Asmura, J., Yenie, E., & Putri, K. (2019). Enhancing BOD5/COD ratio co-substrate tofu wastewater and cow dung during ozone pretreatment. MATEC Web of Conferences, 276. https://doi.org/10.1051/matecconf/201927606027
  2. APHA-AWWA, (American Public Health Association–American Water Works Association). (1999). Standards methods for the examination of water and wastewater. L. Clesceri, A. Greenberg, & A. Eaton (Eds.), Water Environment Federation (20th ed.).
  3. Atehortúa, D., Giraldo Buitrago, L. C., & Villegas Palacio, J. C. (2024). Impacto del uso del suelo urbano en la calidad fisicoquímica del agua de escorrentía superficial en una cuenca urbana. Revista EIA, 21(42). https://doi.org/10.24050/reia.v21i42.1749
  4. Benjumea-Hoyos, C. A., Ramírez, A. C., & Martínez, A. C. (2023). Calidad fisicoquímica y microbiológica de los ríos asociados a un embalse tropical de montaña en el periodo 2010-2018 (ríos Nare, Nusito y San Lorenzo). Revista Lasallista de Investigacion, 20(1), 103–122. https://doi.org/10.22507/rli.v20n1a7
  5. Cárdenas, G. L., & Sánchez, I. A. (2013). Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Universidad y Salud, 15(1), 72–88. bit.ly/4i0pQ1O
  6. Castañe, P., Loez, C., Olguin, H., Puig, A., Rovedatti, M., Topalian, M., & Salibian, A. (1998). Caracterización y variación espacial de parámetros fisicoquímicos y del plancton en un río urbano contaminado, (río Reconquista, Argentina). Revista Internacional de Contaminación Ambiental, 14(2), 69–77.
  7. Ccama, H. A. (2021). Crecimiento poblacional y cambios territoriales en el centro urbano de Salcedo, Puno. Espacio y Desarrollo, 51(37), 37–51. https://doi.org/10.18800/espacioydesarrollo.202101.002
  8. Chamorro, G. I. (2011). Guía de hidrometría: estimación del caudal por el método de flotadores. SENAMHI/DR-Lima N° 01-2011.
  9. Chan, L., Li, Y., & Stenstrom, M. K. (2008). Protocol Evaluation of the Total Suspended Solids and Suspended Sediment Concentration Methods: Solid Recovery Efficiency and Application for Stormwater Analysis. Water Environment Research, 80(9), 796–805. https://doi.org/10.2175/106143008x296497
  10. Chaves, E. (2025). Aplicación del Índice Simplificado de Calidad de Agua (ISQA) en la evaluación de calidad del agua en el río Ocloro , San José , Costa Rica. Tecnología En Marcha, 38(1), 59–67. https://doi.org/10.18845/tm.v38i1.7027
  11. Custodio, M., & Chavez, E. (2019). Quality of the aquatic environment of high Andean rivers evaluated through environmental. Ingeniare, Revista Chilena de Ingenieria, 27(3), 396–409.
  12. Dallas, H. (2009). The effect of water temperature on aquatic organisms: a review of knowledge and methods for assessing biotic responses to temperature (WRC Report No. KV 213/09).
  13. EPA, (Environmental Protection Agency). (2013). Total nitrogen. bit.ly/3Yi6XAq
  14. EPA, (Environmental Protection Agency). (2015). Total Phosphorus. https://bit.ly/4lahJCC
  15. Escobar, J. (2002). La contaminación de los ríos y sus efectos en las áreas costeras y el mar. CEPAL, Serie recursos naturales e infraestructura (Vol. 50).
  16. González-Dávila, R. P., Ventura-Houle, R., De-la-Garza-Requena, F. R., & Heyer-Rodríguez, L. (2019). Caracterización fisicoquímica del agua de la laguna La Vega Escondida, Tampico, Tamaulipas-México. Tecnología y Ciencias del Agua, 10(1), 01–29. https://doi.org/10.24850/j-tyca-2019-01-01
  17. González, M., De la Lastra, I., & Rodríguez, I. (2007). La urbanización y su efecto en los ríos. Estrategia Nacional de Restauración de Ríos. Ministerio de Medio Ambiente, Universidad Politécnica de Madrid. https://www.miteco.gob.es/es/agua/publicaciones/Urbanizacion_efectos_en_rios_Julio_2007_1_tcm30-214550.pdf
  18. LaDuke, O. (2022). Chemical Oxygen Demand and its applications. Advanced Journal of Environmental Science and Technology, 13(3), 1.
  19. Larrea, J., Rojas, M., & Romeu, B. (2013). Bacterias indicadoras de contaminación fecal en la evaluación de la calidad de las aguas. Revista Cenic, Ciencias Biológicas, 44(3), 24–34.
  20. Loucif, K., Neffar, S., Menasria, T., Maazi, M. C., Houhamdi, M., & Chenchouni, H. (2020). Physico-chemical and bacteriological quality assessment of surface water at Lake Tonga in Algeria. Environmental Nanotechnology, Monitoring and Management, 13(January), 100284. https://doi.org/10.1016/j.enmm.2020.100284
  21. Loza-Del Carpio, A., Gamarra, C., & Condori, N. (2016). Caracterización morfobatimétrica y estimación de sedimentos de la bahía interior de Puno, lago Titicaca, mediante tecnología SIG. Revista de Investigaciones Altoandinas, 18(2), 237–248. https://doi.org/10.18271/ria.2016.205
  22. Mancilla-Villa, O. R., Gómez-Villaseñor, L., Olguín-Lopez, J. L., Guevara-Gutiérrez, R. D., Hernández-Vargas, O., Ortega-Escobar, H. M., Flores-Magdaleno, H., Can-Chulim, Á., Sánchez-Bernal, E. I., Cruz-Crespo, E., & Palomera-García, C. (2022). Contaminación orgánica por coliformes, Nitrógeno y Fósforo en los ecosistemas acuáticos de la cuenca Ayuquila-Armería, Jalisco, México. Revista de Ciencias Biológicas y de La Salud, 24(1), 5–14.
  23. Mathur, A. (2015). Conductivity: Water Quality Assesment. International Journal of Engineering Research & Technology, 3(3), 2014–2016.
  24. MINAM, (Ministerio de Ambiente). (2017). Decreto Supremo N° 004-2017-MINAM, Aprueban Estandares de Calidad Ambiental (ECA) para Agua y establecen disposiciones complementarias, El Peruano 10 de julio del 2017. bit.ly/4jqcQUx
  25. Mora-Aparicio, C., Alfaro-Chinchilla, C., Pérez-Molina, J. P., & Vega-Guzmán, I. (2022). Environmental contribution of Los Tajos wastewater treatment plant in the removal of physicochemical and microbiological pollutants. Uniciencia, 36(1), 1–17. https://doi.org/10.15359/ru.36-1.33
  26. Mount, J. F. (1995). California rivers and streams: The conflict between fluvial process and land use. University of California Press.
  27. MCPS–Municipalidad Centro Poblado Salcedo. (2022). Informe de catastro y servicios de la Municipalidad del Centro Poblado Salcedo–2022. Oficina de Catastro urbano.
  28. Northcote, T., & Morales, P. (1991). Desarrollo adecuado de los recursos acuáticos: capacitación, investigación y manejo. In T. Northcote, P. Morales, D. Levy, & M. Greaven (Eds.), Contaminación en la lago Titicaca, Perú: capacitación, investigación y manejo (pp. 1–11). Westwater Research Center, University of British Columbia.
  29. Ocola, J. J., & Laqui, W. F. (2017). Fuentes contaminantes en la cuenca del lago Titicaca: Un aporte al conocimiento de las causas que amenazan la calidad del agua del maravilloso lago Titicaca. Autoridad Nacional del Agua-ANA.
  30. Ortiz, C., Jofre, M., & González, P. (2024). Diagnóstico integral de un río urbano. Aplicación de métricas biológicas, fisicoquímicas y del bosque de ribera. Ecosistemas, 33(1), 2613. https://doi.org/10.7818/ecos.2613
  31. Petculescu, I., Hynds, P., Brown, R. S., McDermott, K., & Majury, A. (2022). An assessment of total coliforms and associated thresholds as water quality indicators using a large Ontario private drinking water well dataset. Science of the Total Environment, 846(July), 157478. https://doi.org/10.1016/j.scitotenv.2022.157478
  32. PU, (Purdue University). (2025). Simple Water Quality Index Calculator. https://www.agry.purdue.edu/hydrology/projects/nexus-swm/en/Tools/WaterQualityCalculator.php
  33. Ramírez, G., & Viña, V. (1998). Limnología Colombiana. Universidad Jorge Tadeo Lozano- Exploration Company Limited (Colombia).
  34. Razali, A., Syed Ismail, S. N., Awang, S., Praveena, S. M., & Zainal Abidin, E. (2020). The impact of seasonal change on river water quality and dissolved metals in mountainous agricultural areas and risk to human health. Environmental Forensics, 21(2), 195–211. https://doi.org/10.1080/15275922.2020.1728434
  35. Revenga, C., Brunner, J., Henninger, N., Kassem, K., & Payne, R. (2000). Pilot Analysis of Globle Ecosystems: Freshwater Systems. World Resources Institute.
  36. Ríos-Touma, B., Villamarín, C., Jijón, G., Checa, J., Granda-Albuja, G., Bonifaz, E., & Guerrero-Latorre, L. (2022). Aquatic biodiversity loss in Andean urban streams. Urban Ecosystems, 25(6), 1619–1629. https://doi.org/10.1007/s11252-022-01248-1
  37. Rodriguez, D. J., Serrano, H. A., Delgado, A., Nolasco, D., & Saltiel‏, G. (2020). From waste to resource: Shifting paradigms for smarter wastewater. International Bank for Reconstruction and Development/The World Bank. https://doi.org/10.1596/33436
  38. Saad, A. M., Asari, F. ., Afandi, S., & Zid, A. (2022). River Pollution: a mini review of causes and effects. Journal of Tourism, Hospitality and Environment Management, 7(29), 139–151. https://doi.org/10/35631/JTHEM.729011
  39. Sáenz-Arias, S., Garcés-Ordóñez, O., Córdoba-Meza, T. L., Blandon, L., Espinosa Díaz, L. F., Vivas-Aguas, L. J., & Canals, M. (2023). Pollution by wastewater discharges: A review on microorganism-microplastic interactions and their possible environmental risks in Colombian coastal waters. Ecosistemas, 32(1), 1–14. https://doi.org/10.7818/ECOS.2489
  40. Sigler, A., & Bauder, J. (2012). Coliforme total y la bacteria E. coli. Northern Plains & Mountains, Regional Water Program.
  41. Sosnovsky, A., Rechencq, M., Fernández, M. V., Suarez, M. J., & Cantet, R. J. C. (2020). Hydrological and physico-chemical dynamics in two andean streams. Limnetica, 39(1), 17–33. https://doi.org/10.23818/limn.39.02
  42. Stevens, M., Ashbolt, N., & Cunliffe, D. (2003). Review of coliforms as microbial indicators of drinking water quality. Australian Government, National Health and Medical Research Council.
  43. Tibebe, D., Kassa, Y., Melaku, A., & Lakew, S. (2019). Investigation of spatio-temporal variations of selected water quality parameters and trophic status of Lake Tana for sustainable management, Ethiopia. Microchemical Journal, 148(April), 374–384. https://doi.org/10.1016/j.microc.2019.04.085
  44. Villamarín, C., Prat, N., & Rieradevall, M. (2014). Caracterización física, química e hidromorfológica de los ríos altoandinos tropicales de Ecuador y Perú. Latin American Journal of Aquatic Research, 42(5), 1072–1086. https://doi.org/10.3856/vol42-issue5-fulltext-12
  45. Von Sperling, M. (2007). BIOLOGICAL Wastewater Treatment Series: Wastewater characteristics, treatment and disposal, volume one. IWA Publishing. https://doi.org/10.5860/choice.45-2633
  46. Waite, I. R., Sobieszczyk, S., Carpenter, K. D., Arnsberg, A. J., Johnson, H. M., Hughes, C. a, Sarantou, M. J., & Rinella, F. a. (2008). Effects of urbanization on stream ecosystems in the Willamette river basin and surrounding Areas, Oregon and Washington. U.S. Geological Survey–USGS, Scientific Investigations Report 2006-5101-D.
  47. Wetzel, R. G. (2001). Limnology. Lake and river ecosystems (3rd ed.). Academic Press.
  48. WHO, (World Health Organization). (2023). Burden of disease attributable to unsafe drinking water, sanitation and hygiene, 2019 update. WHO.
  49. Yang, C. (2022). Review on the Causes of Eutrophication in Water. In G. Ali (Ed.), Advances in Social Science, Education and Humanities Research (pp. 246–252). Atlantis Press SARL. https://doi.org/10.2991/978-2-494069-31-2_30