Vol. 21 Núm. 1 (2019)
Artículo original

Optimización de la formulación de cabanossi con carne de llama (Lama glama) y papa (Solanum tuberosum) mediante el diseño de mezclas

Miriam Ramos Ramírez
Universidad Nacional Hermilio Valdizán Huánuco Perú, Facultad de Ciencias Agrarias
Marcial Silva Jaimes
Universidad Le Cordon Bleu - Perú, Facultad de Ciencia de Alimentos

Publicado 2019-01-30

Palabras clave

  • Llama,
  • sustitución de grasa,
  • análisis perfil de textura,
  • iseño de mezclas,
  • salchichas secas fermentadas

Cómo citar

Ramos Ramírez, M., Jordán Suárez, O., Silva Jaimes, M., & Salvá Ruiz, B. (2019). Optimización de la formulación de cabanossi con carne de llama (Lama glama) y papa (Solanum tuberosum) mediante el diseño de mezclas. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(1), 15-28. https://doi.org/10.18271/ria.2019.442

Resumen

El estudio tuvo como objetivo optimizar la formulación de cabanossi bajo en grasa, empleando el método de Diseño de Mezclas (D-Optimal) a partir de 16 formulaciones de cabanossi compuestas por carne de llama (60-80%), grasa de cerdo (10-20%) y pulpa de papa cocida (10-20%). Las variables respuestas fueron: el perfil de textura (cohesividad, masticabilidad, dureza, gomosidad y elasticidad), croma (C*), humedad, rendimiento, actividad de agua y pH. Para la optimización de la formulación se consideró minimizar la grasa de cerdo, manteniendo la dureza y humedad semejantes a un cabanossi comercial. El análisis del diseño de mezclas planteó la formulación con las siguientes proporciones: carne de llama (72.41%), grasa de cerdo (10.78%) y pulpa de papa cocida (16.81%), con una deseabilidad de 0.84; formulación que fue validada a través de un proceso experimental, y contrastada por la prueba t de Student, confirmando la efectividad en la predicción del modelo matemático obtenido

Referencias

  1. Alastrué, Y., Sanz, S., Olarte, C., & Romero, E. (2015). Caracterización del chorizo riojano III Análisis Sensorial. Eurocarne, 241, 4.
  2. Alves, S. P., Alfaia, C. M., Škrbić, B., Durišić-Mladenović, N., Fernandes, M. J., Bessa, R. J. B., & Fraqueza, M. J. (2015). Tracing Nutritional Composition of Dry Fermented Sausages from Distinct Origins. Journal of Food Processing and Preservation, 39(6), 2969–2978. https://doi.org/10.1111/jfpp.12548
  3. AOAC. (2006). Official Methods of Analysis. (W. Horwitz & G. Latimer, Eds.) (18th ed.). AOAC International.
  4. Arellano, O., Quispe, G., Ayaviri, D., & Escobar, F. (2017). Estudio de la Aplicación del Método de Costos ABC en las Mypes del Ecuador. Revista Investigaciones Altoandinas, 19(1), 33–46. https://doi.org/10.1002/ria.2016.253
  5. Bengtsson, H., Montelius, C., & Tornberg, E. (2011). Heat-treated and homogenised potato pulp suspensions as additives in low-fat sausages.
  6. Meat Science, 88(1), 75–81. https://doi.org/10.1016/j.meatsci.2010.12.005
  7. Beriain, M. J., Gómez, I., Ibañez, F. C., Sarriés, M. V., & Ordóñez, A. I. (2018). Improvement of the Functional and Healthy Properties of Meat Products. In A. M. Holban & A. M. Grumezescu (Eds.), Food Quality: Balancing Health and Disease (1st ed., p. 530). Academic Press. https://doi.org/10.1016/B978-0-12-811442-1.00001-8
  8. Bolger, Z., Brunton, N. P., Lyng, J. G., & Monahan, F. J. (2016). Comminuted meat products - consumption, composition, and approaches to healthier formulations. Food Reviews International, 33(2), 143–166.
  9. https://doi.org/10.1080/87559129.2016.1149861
  10. Carrapiso, A. I., Martín-Cabello, L., Torrado-Serrano, C., & Martín, L. (2015). Sensory Characteristics and Consumer Preference of Smoked Dry-Cured Iberian Salchichon. International Journal of Food Properties, 18(9), 1964–1972. https://doi.org/10.1080/10942912.2014.942781
  11. Cobos, A., & Díaz, O. (2015). Chemical Composition of Meat and Meat Products. In P. C. . Cheung & B. M. Mehta (Eds.), Handbook of Food Chemistry (1st ed., pp. 471 – 510). Lugo: Springer-Verlag Berlin Heidelberg.
  12. https://doi.org/10.1007/978-3-642-36605-5
  13. Cornell, J. A. (2002). Experiments with Mixtures (3rd ed.). New York: Jhon Wiley & Sons. https://doi.org/10.1002/9781118204221
  14. Cristofanelli, S., Antonini, M., Torres, D., Polidori, P., & Renieri, C. (2004). Meat and carcass quality from Peruvian llama (Lama glama) and alpaca (Lama pacos). Meat Science, 66, 589–593. https://doi.org/10.1016/S0309-1740(03)00174-8
  15. Elias, C. C. (2002). Aplicación Del Metodo De Diseño De mezclas en la sustitución de carne por Harina Texturizada De Soya, En Cabanossi. Universidad Nacional Agraria La Molina. http://repositorio.lamolina.edu.pe/handle/UNALM/1808
  16. Esperbent, P. O. R. C. (2017). Carnes alternativas : símbolo de las economías regionales. (pp. 11–15).
  17. Fang, Z., Lin, P., Ha, M., & Warner, R. D. (2018). Effects of incorporation of sugarcane fibre on the physicochemical and sensory properties of chicken sausage. International Journal of Food Science & Technology, 1–9. https://doi.org/10.1111/ijfs.13894
  18. Fernández-Diez, A., Caro, I., Castro, A., Salvá, B. K., Ramos, D. D., & Mateo, J. (2016). Partial Fat Replacement by Boiled Quinoa on the Quality Characteristics of a Dry-Cured Sausage. Journal of Food Science, 81(8), C1891–C1898. https://doi.org/10.1111/1750-3841.13393
  19. Fernández-López, J., Sendra, E., Sayas-Barberá, E., Navarro, C., & Pérez-Alvarez, J. A. (2008). Physico-chemical and microbiological profiles of “salchichón” (Spanish dry-fermented sausage) enriched with orange fiber. Meat Science, 80(2), 410–417. https://doi.org/10.1016/j.meatsci.2008.01.010
  20. Flores, M., Olivares, A., & Corral, S. (2013). Healthy Trends Affect the Quality of Traditional Meat Products in Mediterranean Area, 183–188.
  21. Fonseca, S., Cachaldora, A., Gómez, M., Franco, I., & Carballo, J. (2013). Effect of different autochthonous starter cultures on the volatile compounds profile and sensory properties of Galician chorizo, a traditional Spanish dry fermented sausage. Food Control, 33(1), 6–14. https://doi.org/10.1016/j.foodcont.2013.01.040
  22. Gutierrez, H., & De la Vara, R. (2012). Análisis y diseño de experimentos (3rd ed.). México D.F.: Mc Graw-Hill.
  23. Ikonić, P., Jokanović, M., Petrović, L., Tasić, T., Škaljac, S., Šojić, B., Džinić, N., Tomović, V., Tomić, J., Danilović, B, Ikonić, B. (2015). Effect of Starter Culture Addition and Processing Method on Proteolysis and Texture Profile of Traditional Dry-Fermented Sausage Petrovská klobása. International Journal of Food Properties, 19(9), 1924–1937. https://doi.org/10.1080/10942912.2015.1089280
  24. Instituto de Estudios Económicos y Sociales. IEES. (2017). Elaboración de Embutidos y Fiambres Embutidos Fiambres (3rd ed.). Lima.
  25. Lorenzo, J. M., & Franco, D. (2012). Fat effect on physico-chemical, microbial and textural changes through the manufactured of dry-cured foal sausage Lipolysis, proteolysis and sensory properties. Meat Science, 92(4), 704–714. https://doi.org/10.1016/j.meatsci.2012.06.026
  26. Mamani-Linares, L. W., & Gallo, C. B. (2013). Meat quality attributes of the Longissimus lumborum muscle of the Kh’ara genotype of llama (Lama glama) reared extensively in northern Chile. Meat Science, 94(1), 89–94.
  27. https://doi.org/10.1016/j.meatsci.2012.12.013
  28. Mejri, L., Ziadi, A., El Adab, S., Boulares, M., Essid, I., & Hassouna, M. (2016). Effect of commercial starter cultures on physicochemical, microbiological and textural characteristics of a traditional dry fermented sausage reformulated with camel meat and hump fat. Journal of Food Measurement and Characterization, 11(2), 758–767. https://doi.org/10.1007/s11694-016-9445-6
  29. Mohamad Zen, N. I., Abd Gani, S. S., Shamsudin, R., & Fard Masoumi, H. R. (2015). The use of D-optimal mixture design in optimizing development of okara tablet formulation as a dietary supplement. Scientific World Journal. https://doi.org/10.1155/2015/684319
  30. Mora-Gallego, H., Serra, X., Guàrdia, M. D., Miklos, R., Lametsch, R., & Arnau, J. (2013). Effect of the type of fat on the physicochemical, instrumental and sensory characteristics of reduced fat non-acid fermented sausages. Meat Science, 93(3), 668–674. https://doi.org/10.1016/j.meatsci.2012.11.042
  31. Olivares, A., Navarro, J. L., Salvador, A., & Flores, M. (2010). Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Science, 86(2), 251–257. https://doi.org/10.1016/j.meatsci.2010.04.005
  32. Ospina-E, J. C., Sierra-C, A., Ochoa, O., Pérez-Álvarez, J. A., & Fernández-López, J. (2012). Substitution of saturated fat in processed meat products: A review. Critical Reviews in Food Science and Nutrition, 52(2), 113–122. https://doi.org/10.1080/10408398.2010.493978
  33. Özkal, S. G., & Ercoşkun, H. (2016). Kinetic Modeling of Quality Aspects of Fermented Sausage (Sucuk) During Storage. Kafkas Universitesi Veteriner Fakultesi Dergisi, 23(2), 195–200. https://doi.org/10.9775/kvfd.2016.16167
  34. Puente Ramírez, E. J., Romero López, R., Rodríguez Borbón, M. I., & Trejo Mandujano, H. A. (2015). Aplicación del diseño por mezclas en la industria alimentaria. Cultura Científica y Tecnológica, 12(56), 140–151.
  35. Roca, M., & Incze, K. (1990). Fermented Sausages. Food Reviews International, 6(1), 91–118. https://doi.org/10.1080/87559129009540862
  36. Saavedra, O. R. (2014). Evaluación de la inclusión de quinua (Chenopodium quinoa) o papa (Solanum tuberosum) en la elaboración de cabanossi con carne de alpaca (Vicugna pacus). Universidad Nacional Agraria La Molina.
  37. http://repositorio.lamolina.edu.pe/handle/UNALM/2474
  38. Salvá, B. K., Zumalacárregui, J. M., Figueira, A. C., Osorio, M. T., & Mateo, J. (2009). Nutrient composition and technological quality of meat from alpacas reared in Peru. Meat Science, 82(4), 450–455. https://doi.org/10.1016/j.meatsci.2009.02.015 .
  39. Swanepoel, M., Leslie, A. J., & Hoffman, L. C. (2016). Comparative analyses of the chemical and sensory parameters and consumer preference of a semi-dried smoked meat product (cabanossi) produced with warthog (Phacochoerus africanus) and domestic pork meat. Meat Science, 114, 103–113.
  40. https://doi.org/10.1016/j.meatsci.2015.12.002
  41. Toldrá, F., & Reig, M. (2011). Innovations for healthier processed meats. Trends in Food Science and Technology, 22(9), 517–522. https://doi.org/10.1016/j.tifs.2011.08.007
  42. Triki, M., Herrero, A. M., Rodríguez-Salas, L., Jiménez-Colmenero, F., & Ruiz-Capillas, C. (2013). Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 31(1), 158–165.
  43. https://doi.org/10.1016/j.foodcont.2012.10.008
  44. Tyburcy, A., & Kozyra, D. (2010). Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage. Meat Science, 86(2), 405–410. https://doi.org/10.1016/j.meatsci.2010.05.025
  45. Utrilla, M. C., García Ruiz, A., & Soriano, A. (2014). Effect of partial reduction of pork meat on the physicochemical and sensory quality of dry ripened sausages: Development of a healthy venison salchichon. Meat Science, 98(4), 785–791. https://doi.org/10.1016/j.meatsci.2014.07.027
  46. Wang, Q., Wu, H., Xie, Y., Chang, H., Li, X., & Liu, C. (2017). Effects of tomato peel as fat replacement on the texture , moisture migration , and sensory quality of sausages with varied fat levels. CyTA - Journal of Food, 15(4), 582–591. https://doi.org/10.1080/19476337.2017.1321586
  47. Zhang, W., Xiao, S., Samaraweera, H., Lee, E. J., & Ahn, D. U. (2010). Improving functional value of meat products. Meat Science, 86(1), 15–31. https://doi.org/10.1016/j.meatsci.2010.04.018
  48. Zhou, J. zhong, Liu, X. li, Huang, K. hong, Dong, M. sheng, & Jiang, H. hu. (2007). Application of the Mixture Design to Design the Formulation of Pure Cultures in Tibetan kefir. Agricultural Sciences in China, 6(11), 1383–1389. https://doi.org/10.1016/S1671-2927(07)60187-4