Interactive determination by total metals in waters of the inner Puno bay of Lake Titicaca (Peru)
Published 2017-06-26
Keywords
- water,
- metals,
- environmental toxicology,
- inner Puno Bay-Peru
How to Cite
Abstract
The inner Puno bay is a restricted area and one of the habitats of Lake Titicaca with high anthropization, where some organic and inorganic elements may be exceeding the thresholds allowable concentrations. The aim of the research was to determine interactively total metals available in the waters of the inner Puno bay of Lake Titicaca, Peru. It was conducted between January and November 2016 by a non-probabilistic for convenience and applying the theoretical method by comparison among six stations of selection. Cu, Zn, Pb, Cd,As, Hg were the determined and quantified elements using atomic absorption spectrometry by inductively coupled plasma with axial view (ICP-AES). It was observed that between the stations there were no statistically significant differences (p ≤ 0.05) when there was an availability of exposure among all the elements, although when comparing each element per station, there were differences for the rainy (January-February-March) and dry season (September-October-November). By comparing each station and between seasons, we found that there was no statistically significant difference, although the higher concentration levels were for the dryness season. We conclude that there is environmental exposure by metals in the waters of the Inner Bay and where their concentrations are permanent during the whole period of the year, being able to bring negative consequences not only for the ecosystem, but also to the human health itself given activities of community benefit that are developed in this geographic space.
References
- Antunes, D.A., Appel, H.M., Culbreth, M., López, G.C., Farina, M. & et al., (2016). Methylmercury and brain development: A review of recent literature. J. Trace Elem. Med. Biol, 38, 99-107.
- Argota, P.G., & Iannacone, J. (2014a). Computerized gecotox methodology for the prediction of ecotoxicological risk from exposure to contamination effects in environmental effluents and aquatic ecosystems. The Biologist, 12(2), 181-193.
- Argota, P.G., & Iannacone, J. (2014b). Similarity in the prediction of ecological risk between the software gecotox® and biomarkers in Gambusia punctata (Poecilidae). The Biologist, 12(2), 85-98.
- Argota, P.G. (2015). Aplicación GECOTOXIC para predicción de riesgo ambiental: caso estudio sobre mortandad de peces en la bahía interior del Lago Titicaca, Puno-Perú. Revista CAMPUS, 20(20), 11-19.
- Autoridad Binacional Autónoma del Lago Titicaca: ALT. (2005). Diagnóstico del nivel de contaminación de los recursos hídricos del Lago Titicaca. Perú – Bolivia.
- Beltrán, F.F.D., Palomino, C.P.R., Moreno, T.E.G., Peralta, G.C. Montesinos, T.D.B. (2015). Calidad de agua de la bahía interior de Puno, lago Titicaca durante el verano del 2011. Revista peruana de biología, 22(3), 335-340.
- Berg, K., Puntervoll, P., Valdersnes, S. & Goksøyr, A. (2010). Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquat. Toxicol, 100, 51-65.
- Berntssen, M.H.G., Aatland, A. & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat. Toxicol, 65, 55-72.
- Blewett, T.A., Simón, R.A., Turko, A.J. & Wright, P.A. (2017). Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus. Aquatic Toxicology, 189, 25-30.
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. (2014). Mercury toxicity and neurodegenerative effects. Rev. Environ. Contam. Toxicol, 229, 1-18.
- Castañe, P.M., Eissa, B.L. & Ossana, N.A. (2013). Respuesta de biomarcadores bioquímicos, morfológicos y comportamentales de la carpa común, Cyprinus carpio, por exposición a muestras ambientales. Ecotoxicology and Environmental Contamination, 8: 41-47.
- Constantini M.L., L. Savetta, G. Mancinelli & L. Rossi. (2004). Spatial variavility of the decomposition rate of Schoenoplectus tatora in a polluted area of lake Titicaca. Journal of Tropical Ecology, 20, 325-335.
- Corwin, D.L. & Brandford, S.A. (2008). Environmental impact and sustainability of degraded water reuse. Journal of Environmental Quality, 37, 1-7.
- Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K.; Singh, U.B. et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental process. Sustainability, 7, 2189-2212.
- Edokpayi, N.J., Odiyo, O.J, Popoola, E.O. Msagati, A.M.T (2016). Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa. Sustainability, 8, 1-13.
- Feist, S.W., Stentiford, G.D., Kent, M.L., Ribeiro, S.A. & Lorance, P. (2015). Histopathological assessment of liver and gonad pathology in continental slope fish from the northeast Atlantic Ocean. Marine Environmental Research, 106, 42-50.
- García, J., Méndez, J., Pásaro, E. & Laffon, B. (2012). Genotoxic effects of lead: An updated review. Environment International, 2(4), 623-636.
- He, J., Zhang, H., Zhang, H., Guo, X., Song, M. & et al. (2014). Ecological risk and economic loss estimation of heavy metals pollution in the Beijiang River. Ecological Chemistry and Engineering, 21, 189-199.
- Heidary, S., Imanpour, N.J. & Monsefrad, F. (2012). Bioaccumulation of heavy metals Cu, Zn, and Hg in muscles and liver of the stellate sturgeon (Acipenser stellatus) in the Caspian Sea and their correlation with growth parameters. Iranian Journal of Fisheries Sciences, 11, 325-337.
- Järup, L., Hellstrom, L., Alfven, T., Carlsson, M.D., Grubb, A., & et al. (2012). Low level exposure to cadmium and early kidney damage: the Oscar study. Occupational and Environmental Medicine, 3(6), 668- 672.
- Jia, L.Z., Lin, Z., Bin, S., Mei, Y.X., Ai, Y.Z. & Chang, W.W. (2017). Antioxidant defenses at transcriptional and enzymatic levels and gene expression of Nrf2-Keap1 signaling molecules in response to acute zinc exposure in the spleen of the large yellow croaker Pseudosciaena crocea. Fish & Shellfish Immunology, 52, 1-8.
- Londoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 145.
- Mcrill, C., Boyer, L.V., Flodod, T.J. & Ortega, L. (2013). Mercury toxicity due to the use of a cosmetic cream. Journal of Occupational and Environmental Medicine, 3(3), 4-7.
- Ministerio de Comercio Exterior y Turismo: MINCETUR. (2005). Diagnóstico ambiental de la Bahía Interior de Puno en el Lago Titicaca. Resumen ejecutivo. Lima, Perú.
- Ministerio del Ambiente: MINAM. (2015). Decreto Supremo: Decreto Supremo N° 015-2015-MINAM. Estándares de calidad de agua. Disponible en: http://www.ana.gob.pe/sites/default/files/normatividad/files/ds-ndeg-015-2015-minam.pdf
- Mir, M.A., Mohammad, L.A., Md., S.I. Md., Z.R. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27-35.
- Mohammed, A.A., Mohd, S.A., Ismail, Y. & Muhammad, A.A. (2016). Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by a waterborne lead exposure. Saudi Journal of Biological Sciences, 23, 634-641.
- Molina, C. I., Ibañez, C., & Gibon, F. M. (2012). Proceso de biomagnificación de metales pesados en un lago hiperhalino ( Poopó , Oruro , Bolivia ): Posible riesgo en la salud de consumidores Biomagnification process of heavy metals of a hiperhaline lake. Ecología En Bolivia, 47(2), 99-118.
- Montgomery, C. (1991). Diseño y Análisis de Experimentos. Grupo Ed. Iberoamérica S.A de C.V. México DF.
- Nguyena, K.C., Willmore, W.G. & Tayabali, A.F. (2013). Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology, 306, 114-123.
- Normalization Standart International: ISO 5667-1. (1980). Water quality. Sampling. Part 1: Guidance on the design of sampling programmes.
- Normalization Standart International: ISO 5667-2. (1991). Water quality. Sampling. Part 2: Guidance on sampling techniques.
- Normalization Standart International: ISO 5667-3. (1994). Water quality. Sampling. Part 3: Guidance on the preservation and handling of samples.
- Pandey, N. & Bhatt, R. (2015). Exiguobacterium mediated arsenic removal and its protective effectagainst arsenic induced toxicity and oxidative damage in freshwaterfish, Channa striata. Toxicology Reports, 2, 1367-1375.
- Proyecto Binacional Lago Titicaca: PELT. (2000). Descontaminación de la Bahía Interior de Puno, Ministerio de la Presidencia del Perú/ INADE, Puno Perú. Pp 67
- Qadir, A., & Malik, R. N. (2011). Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the river Chenab, Pakistan. Biological Trace Element Research, 143(3), 1524-1540.
- Samantray, P., Mishra, B.K., Panda, C.R. & Rout, S.P. 2009. Assessment of wáter quality index in Mahanadi and Atharabanki rivers and Taldanda canal in Paradip Area, India. Journal of Human Ecology, 26, 153-161.
- Shortle, J. (2013). Economic and Environmental markets: Lessons from Water-quality trading. Agricultural and Resource Economics Review, 42, 57-74.
- Sia, S.G.L, Ramos, B.G. & Sia, S.Ma.L. (2013). Bioaccumulation and histopathological alteration of total lead in selected fishes from Manila Bay, Philippines. Saudi Journal of Biological Sciences, 20, 353-355.
- Statgraphics Plus for Windows: SGPW. (2001). Version 5.1. Copyright 1994-2001 for Statistical Graphics Corporation.
- Szymkowicz, D., Sims, C.K., Castro, M.N., Bridges, C.W. Bain, J.L. (2017). Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later. Aquatic Toxicology, 186, 1-10.
- Uren, W.T.M., Willians, D.T., Kadsiadaki. I, Lange, A., Lewis, C. & et al., (2017). Hepatic transcripional responses to copper in the three-spined stickleback are affected by their pollution exposure history. Aquatic Toxicology, 184, 26-36.
- Varol, M. & Sen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. Catena, 92, 1-12.
- Wang, C., Hu, X., Gao, Y., & Ji, Y. (2015). ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells. BioMed Research International, 1-9.
- Wang, X., & Zang, S. (2014). Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilonjiang Province, China. Ecotoxicology, 23, 609-617.