Vol. 22 Núm. 1 (2020)
Artículo original

Ocurrencia de contaminantes orgánicos persistentes e hidrocarburos aromáticos policíclicos en sedimentos del interior de la bahía del lago Titicaca (Puno, Perú)

Walter Alejandro Zamalloa Cuba
Escuela Profesional de Ingeniería Química, Universidad Nacional del Altiplano de Puno, Perú
Valdemar Luis Tornisielo
Centro de Energía Nuclear na Agricultura, Laboratorio de Ecotoxicologia, Piracicaba, Brasil
Franz Zirena Vilca
Universidad Nacional de Moquegua, Ilo, Perú

Publicado 2020-01-22

Palabras clave

  • Contaminantes,
  • Cromatografía,
  • Plaguicidas organoclorados,
  • Riesgo ambiental

Cómo citar

Zamalloa Cuba, W. A. ., Tornisielo, V. L., & Zirena Vilca, F. (2020). Ocurrencia de contaminantes orgánicos persistentes e hidrocarburos aromáticos policíclicos en sedimentos del interior de la bahía del lago Titicaca (Puno, Perú). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(1), 34-44. https://doi.org/10.18271/ria.2020.531

Resumen

El lago Titicaca es un importante recurso hídrico y de él depende el equilibrio ecológico de la meseta andina peruano-boliviana. En la actualidad, está siendo perturbada por las malas prácticas de gestión de los recursos hídricos, razón por la cual los contaminantes orgánicos persistentes (COP) y los hidrocarburos aromáticos policíclicos (HAP) fueron monitoreados en los sedimentos de 13 estaciones de muestreo en el interior de la bahía del Lago Titicaca (Puno, Perú). Las muestras fueron liofilizadas y almacenadas a -70°C para su posterior análisis. Para la validación del método analítico se consideraron los siguientes parámetros: recuperación, repetición e incertidumbre de todos los compuestos estudiados. Los COPs fueron determinados por cromatografía de gases acoplada a un detector de captura de electrones, y se detectó la presencia de β-BHC, 0.018 μg/g; o,p´-DDE, 0.0011 μg/g; dicofol 0.0065 μg/g y sulfato de endosulfán 0.0061 μg/g. Por otra parte, los HAP se determinaron mediante cromatografía líquida acoplada a un detector de fluorescencia, confirmando la presencia de naftalina, 0.058 μg/g; pireno, 0.039 μg/g; benzo(a)antraceno, 0.571 μg/g y criseno, 0.033 μg/g. La presencia de COPs y HAPs evidencia un riesgo ambiental para las especies que habitan el ecosistema de este lago.

Referencias

  1. Aksu, A., Balkis, N., Taşkin, Ö. S., & Erşan, M. S. (2011). Toxic metal (Pb, Cd, As and Hg) and organochlorine residue levels in hake (Merluccius merluccius) from the Marmara Sea, Turkey. Environmental Monitoring and Assessment, 182(1–4), 509–521. https://doi.org/10.1007/s10661-011-1893-1
  2. Alam, M. J., Daoxian, Y., Jiang, Y. J., Yuchuan, S., Yong, L., & Xin, X. (2014). Sources and transports of organochlorine pesticides in the Nanshan underground river, China. Environmental Earth Sciences, 71(4), 1977–1987. https://doi.org/10.1007/s12665-013-2919-5
  3. Archundia, D., Duwig, C., Lehembre, F., Chiron, S., Morel, M.-C., Prado, B., … Martins, J. M. F. (2017). Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Science of The Total Environment, 576, 671–682. https://doi.org/10.1016/j.scitotenv.2016.10.129
  4. Arrebola, J. P., Belhassen, H., Artacho-Cordón, F., Ghali, R., Ghorbel, H., Boussen, H., … Olea, N. (2015). Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: A case–control study in Tunisia. Science of The Total Environment, 520, 106–113. https://doi.org/10.1016/j.scitotenv.2015.03.045
  5. Barni, M. F. S., Ondarza, P. M., Gonzalez, M., Da Cuña, R., Meijide, F., Grosman, F., … Miglioranza, K. S. B. (2016). Persistent organic pollutants (POPs) in fish with different feeding habits inhabiting a shallow lake ecosystem. Science of The Total Environment, 550, 900–909. https://doi.org/10.1016/j.scitotenv.2016.01.176
  6. Bhalerao, T. (2013). Biominerlization and Possible Endosulfan Degradation Pathway Adapted by Aspergillus niger. Journal of Microbiology and Biotechnology, 23. https://doi.org/10.4014/jmb.1307.07051
  7. BRAHUSHI, F., KENGARA, F. O., SONG, Y., JIANG, X., MUNCH, J. C., & WANG, F. (2017). Fate Processes of Chlorobenzenes in Soil and Potential Remediation Strategies: A Review. Pedosphere, 27(3), 407–420. https://doi.org/10.1016/S1002-0160(17)60338-2
  8. Cerqueira, F., Matamoros, V., Bayona, J., & Piña, B. (2019). Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. Science of The Total Environment, 652, 660–670. https://doi.org/10.1016/j.scitotenv.2018.10.268
  9. Chen, J., Su, Z., Dai, T., Huang, B., Mu, Q., Zhang, Y., & Wen, D. (2019). Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays. Journal of Environmental Sciences (China), 81, 156–167. https://doi.org/10.1016/j.jes.2019.01.016
  10. Christensen, E. R., & Bzdusek, P. A. (2005). PAHs in sediments of the Black River and the Ashtabula River, Ohio: source apportionment by factor analysis. Water Research, 39(4), 511–524. https://doi.org/10.1016/j.watres.2004.11.016
  11. Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere, 172, 52–71. https://doi.org/10.1016/j.chemosphere.2016.12.129
  12. Dai, G., Liu, X., Liang, G., Han, X., Shi, L., Cheng, D., & Gong, W. (2011). Distribution of organochlorine pesticides (OCPs) and poly chlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. Journal of Environmental Sciences, 23(10), 1640–1649. https://doi.org/10.1016/S1001-0742(10)60633-X
  13. de Almeida, M., do Nascimento, D. V., de Oliveira Mafalda, P., Patire, V. F., & de Albergaria-Barbosa, A. C. R. (2018). Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of a Tropical Bay influenced by anthropogenic activities (Todos os Santos Bay, BA, Brazil). Marine Pollution Bulletin, 137, 399–407. https://doi.org/10.1016/j.marpolbul.2018.10.040
  14. Dejoux, C., & Iltis, A. (1992). Lake Titicaca : a Synthesis of Limnological Knowledge. Springer Netherlands.
  15. Elliott, S. M., Brigham, M. E., Lee, K. E., Banda, J. A., Choy, S. J., Gefell, D. J., … Jorgenson, Z. G. (2017). Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLOS ONE, 12(9), e0182868. https://doi.org/10.1371/journal.pone.0182868
  16. Fernandes, M. J., Paíga, P., Silva, A., Llaguno, C. P., Carvalho, M., Vázquez, F. M., & Delerue-Matos, C. (2020). Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere, 239, 124729. https://doi.org/10.1016/j.chemosphere.2019.124729
  17. Jiao, W., Wang, T., Khim, J. S., Luo, W., Hu, W., Naile, J. E., … Lu, Y. (2013). Polycyclic aromatic hydrocarbons in soils along the coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environmental Monitoring and Assessment, 185(10), 8185–8195. https://doi.org/10.1007/s10661-013-3166-7
  18. Kroll, O., Hershler, R., Albrecht, C., Terrazas, E. M., Apaza, R., Fuentealba, C., … Wilke, T. (2012). The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history. Ecology and Evolution, 2(7), 1517–1530. https://doi.org/10.1002/ece3.280
  19. Mah, T. C., & Toole, G. A. O. (2001). Mechanisms of biofilm resistance to antimicrobial agents. 9(1), 34–39.
  20. Monroy, M., Maceda-Veiga, A., & de Sostoa, A. (2014). Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Science of The Total Environment, 487, 233–244. https://doi.org/10.1016/j.scitotenv.2014.03.134
  21. Nakata, H., Hirakawa, Y., Kawazoe, M., Nakabo, T., Arizono, K., Abe, S.-I., … Ding, X. (2005). Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China. Environmental Pollution, 133(3), 415–429. https://doi.org/10.1016/j.envpol.2004.07.003
  22. Peng, N., Li, Y., Liu, Z., Liu, T., & Gai, C. (2016). Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion. Science of The Total Environment, 565, 1201–1207. https://doi.org/10.1016/j.scitotenv.2016.05.188
  23. Polder, A., Müller, M. B., Brynildsrud, O. B., de Boer, J., Hamers, T., Kamstra, J. H., … Lyche, J. L. (2016). Dioxins, PCBs, chlorinated pesticides and brominated flame retardants in free-range chicken eggs from peri-urban areas in Arusha, Tanzania: Levels and implications for human health. Science of The Total Environment, 551–552, 656–667. https://doi.org/10.1016/j.scitotenv.2016.02.021
  24. Ramesh, A., Walker, S. A., Hood, D. B., Guillén, M. D., Schneider, K., & Weyand, E. H. (2004). Bioavailability and Risk Assessment of Orally Ingested Polycyclic Aromatic Hydrocarbons. International Journal of Toxicology, 23(5), 301–333. https://doi.org/10.1080/10915810490517063
  25. Ricking, M., & Schwarzbauer, J. (2012). DDT isomers and metabolites in the environment: an overview. Environmental Chemistry Letters, 10(4), 317–323. https://doi.org/10.1007/s10311-012-0358-2
  26. Snedeker, S. M., & Hay, A. G. (2012). Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes? Environmental Health Perspectives, 120(3), 332–339. https://doi.org/10.1289/ehp.1104204
  27. Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 1(1), 14–24. https://doi.org/10.1016/j.emcon.2015.07.001
  28. Wang, B., Wang, Y., Dong, F., Zhu, J., Tan, J., Fu, X., … Li, M. (2016). Analysis and Occurrence of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbon in Sludge dredged from a Serious Eutrophic Lake, China. Procedia Environmental Sciences, 31, 860–866. https://doi.org/10.1016/j.proenv.2016.02.098
  29. Wang, Q., & Kelly, B. C. (2017). Occurrence and distribution of halogenated flame retardants in an urban watershed: Comparison to polychlorinated biphenyls and organochlorine pesticides. Environmental Pollution, 231, 252–261. https://doi.org/10.1016/j.envpol.2017.07.092
  30. Zeng, Q., Jeppesen, E., Gu, X., Mao, Z., & Chen, H. (2018). Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture- and shipping-impacted subtropical lake, China. Chemosphere, 201, 612–620. https://doi.org/10.1016/j.chemosphere.2018.03.031
  31. Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S., & Zhao, J.-L. (2015). Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environmental Science & Technology, 49(11), 6772–6782. https://doi.org/10.1021/acs.est.5b00729.