Vol. 19 No. 4 (2017)
Original articles

Evaluation of the useful life of two fruits using a biodegradable packing of yucca (Manihot esculenta)

Sayuri López
National University Toribio Rodríguez de Mendoza of Amazonas – Peru
Segundo G. Chávez
National University Toribio Rodríguez de Mendoza of Amazonas – Peru
Tony S. Chuquizuta
National University Toribio Rodríguez de Mendoza of Amazonas – Peru

Published 2017-10-25

Keywords

  • biodegradable,
  • berries,
  • energy,
  • packaging,
  • useful life time

How to Cite

López, S. ., Chávez, S. G. ., & Chuquizuta, T. S. . (2017). Evaluation of the useful life of two fruits using a biodegradable packing of yucca (Manihot esculenta). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 19(4), 373-380. https://doi.org/10.18271/ria.2017.311

Abstract

The objective of the research was to evaluate a biodegradable container from cassava starch to prolong the useful life of two fruits, strawberry (VESCA) and blackberry (Rubus sp.), stored at room temperature and refrigeration. Three factors were evaluated with two levels each (container, temperature and type of fruit). The variable response was the useful life time, for which it was determined: PH, acidity, °Brix, Color (LAB *) and calorific energy. Both fruits, strawberry and blackberry, were kept up to seven days at room temperature and nine days in refrigeration, using the biodegradable container, obtaining times superior to control (without packaging to the environment).

 

References

  1. Arrieta, M., Sessini, V., & Peponi, L. (2017). Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. European Polymer Journal, 111-124.
  2. Belrtrán, A., Ramoz, M., & Alvarez, M. (2010). Estudio de la Vida Útil de Fresas (Fragaria vesca) Mediante Tratamiento con radiacción ultravioleta de onda corta(UV-C). Tecnológica ESPOL – RTE, 23(2), 17-24.
  3. Castro, W., Oblitas, J., Chuquizuta, T., & Avila-George, H. (2017). Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. Journal of Cereal Science, 194 - 199.
  4. Charro, M. M. (2015). Obtención de un polímero biodegradable a partir de almidón de patata. Tesis , Quito . Obtenido de http://www.dspace.uce.edu.ec:8080/bitstream/25000/3788/1/T-UCE-0017-97.pdf
  5. Chicaiza, J. (2015). Determinación de los parametros fisicoquimicos y microbiologicos de la fresa (fragaria vesca) variedad oso grande como base para el establecimiento de norma de los requisitos. tesis. Obtenido de http://dspace.uniandes.edu.ec/bitstream/123456789/751/1/TUABQF003-2015.pdf
  6. Fan, G., Zha, J., Du, R., & Gao, L. (2009). Determination of soluble solids and firmness of apples by Vis/NIR transmittance. Journal of Food Engineering, 416 - 420.
  7. FAO. (12 de 08 de 2014). Food and Agriculture Organization of the United Nations. Obtenido de Food and Agriculture Organization of the United Nations: http://www.fao.org/faostat/es/?#data/QC/visualize
  8. Fernández, J. M. (2005). Estructura y función de los hidratos de carbono: azúcares,almidón, glucógeno, celulosa. Obtenido de https://ferrusca.files.wordpress.com/2013/04/tema5-hidratoscarbono.pdf
  9. Fonceca, S., Oliveira, F., & Brecht, J. (2002). Modellig respiration rate of fresh fruits and vegetable sfor modified atmosphere packages. Elcevier, 52, 1-21. Obtenido de http://hos.ufl.edu/sites/default/files/faculty/jkbrecht/publications/JFE%2052,%2099-119%202002.pdf
  10. García, O., & Pinzón, M. (2016). Efecto de recubrimientos de almidon de plátano guayabo (mUsa paradisiaca L.) en la calidad de fresas. Alimentos hoy, 24(39). Obtenido de http://alimentoshoy.acta.org.co/index.php/hoy/article/view/407/337
  11. Holcroft, D., & Kader, A. (2008). Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biology and Technology, 19(32). Obtenido de http://www.sciencedirect.com/science/article/pii/S092552149900023X
  12. Liu , W., Xue , J., Cheng , B., Zhu , S., Ma , Q., & Ma, H. (2016). Anaerobic biodegradation, physical and structural properties of normal and high-amylose maize starch films. Int J Agric & Biol Eng , 9(5), 185. Obtenido de https://ijabe.org/index.php/ijabe/article/viewFile/2005/pdf
  13. Meneses, J., Corrales, C. M., & Valencia, M. (2007). Síntesis y caracterización de un polimero biodegradable a partir de almidón de yuca. Revista EIA, 57 - 67.
  14. MINSA. (2011). Política Nacional de salud ambiental 2011-2020. Obtenido de http://www.digesa.minsa.gob.pe/publicaciones/descargas/POLITICA-DIGESA-MINSA.pdf
  15. Moncayo Martínez , D. C. (2013). Desarrollo de un recubrimiento comestible a partir de un biopolímero para prolongar la vida útil de frutas frescas. Bogota.
  16. Moraes Crizel, T., Haas Costa, T. M., Oliveira Rios, A., & Hickmann Flôres, S. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 218-228.
  17. Paredes Pantoja , V. E. (2017). Efecto de un recubrimiento comestible de gelatina y ɛ-polilisina en la calidad microbiológica de mora de castilla (Rubus glaucus Benth). Ambato.
  18. Ruiz, M., Ávila, J., & Ruales, J. (2016). Recubrimiento comestible bioactivo para aplicarlo en la frutilla(fragaria vesca ) como proceso de postcosecha. Iberoamericana de Tecnología, 17(2), 276-287. Obtenido de http://www.redalyc.org/pdf/813/81349041015.pdf
  19. Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari. (2016). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Food sci technol, 53(1). doi:10.1007/s13197-015-2009-7
  20. Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 634-643.
  21. Tosun, I., Ustun, S., & Tekguler, B. (2008). Physical and chemical changes during ripening of blackberry fruits. Scientia Agricola, 65(1), 1-6. Obtenido de http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162008000100012%20%C2%B0
  22. Trinetta, V. (2016). Biodegradable Packaging. Reference Module in Food Science, 2-4.
  23. Trujillo, C. (2014). Obtención de películas biodegradables a partir de almidon de yuca(Manihot esculenta) doblemente modificado para uso en empaque de alimentos. Tesis , Puerto Maldonado . Obtenido de http://repositorio.unamad.edu.pe/bitstream/handle/UNAMAD/65/004-2-1-013.pdf?sequence=1&isAllowed=y
  24. Valencia, A., Rivera, C., & Murillo , E. A. (2013). Estudio de las propiedades de mezclas de alcohol polivínilico-almidón de yuco- sorbitol obtenidas por casting. Colombiana de materiales (4), 41-51. Obtenido de https://aprendeenlinea.udea.edu.co/revistas/index.php/materiales/article/view/15089/13165
  25. Valencia-Sullca, C., Vargas, M., Atarés , L., & Chiralt, A. (2017). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 53-83.
  26. Vargas, M., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 164–171.
  27. Yaman, Ö., & Bayoindirli, L. (2002). Effects of an Edible Coating and Cold Storage on Shelf-life and Quality of Cherries. Elsevier Science, 146–15