Vol. 19 No. 4 (2017)
Original articles

Antimicrobial effect of the quitosano and rind of orange in the treatment of waste water

Yesenia Campo Vera
Research Group for Social, Agroindustrial, Technological and Environmental Innovation Araucana- GIISATA
Mónica Alexandra Delgado
Research Group for Social, Agroindustrial, Technological and Environmental Innovation Araucana- GIISATA
Yuly Roal, Gustavo Mora
Research Group for Social, Agroindustrial, Technological and Environmental Innovation Araucana- GIISATA

Published 2017-10-25

Keywords

  • Antimicrobial,
  • waste water,
  • orange peels,
  • chitosan

How to Cite

Campo Vera, Y. ., Delgado, M. A. ., & Gustavo Mora, Y. R. . (2017). Antimicrobial effect of the quitosano and rind of orange in the treatment of waste water. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 19(4), 381-388. https://doi.org/10.18271/ria.2017.312

Abstract

Chitosan and its derivatives as natural antimicrobial agents can be applied in agriculture, and in the food, biomedical, biotechnological and pharmaceutical industry. Its antimicrobial activity depends on many factors such as its molecular size, source, associated components, pH, concentration and the type of microorganism. Orange peels are a bio absorbent of ecological nature low-cost and easily found. The research aims to assess the antimicrobial effect of chitosan and aqueous extract or orange peels in different concentrations for the treatment of waste waters. The chitosan was obtained in its commercial presentation (Ch) of low molecular weight with a deacetylation (DA) degree of 81.4%, and the orange peels were treated by air-drying and later pulverization. During the essay, Gram positive and Gram negative bacteria were isolated and identified from the samples of waste water taken from the final emitter in the waste water treatment plant in the municipality of Saravena, Colombia; and the inhibition percentage was determined through antibiogram tests. Results showed that Gram positive bacteria are more sensitive to treatment than Gram negative bacteria. The combination of chitosan and aqueous extract of orange peels (at a 50%-50% ratio) caused a significant increase in the inhibition percentage, showing that orange peels bolster the antibacterial activity of chitosan and make it an efficient agent to be used in the treatment of waste waters.

 

References

  1. Ahn J, Kim Y, Seo E, Choi Y, Kim H. (20079. Antioxidant effect of natural plant extraets on the microencapsulated nigh oleic sunflower oil. J Food Engineering, 84: 327 -334.
  2. Benites J, Díaz R, López J, Gajardo S, (2011). Actividad antioxidante y antibacteriana de seis cáscaras de frutos del oasis de Pica. Rev. BIOFARBO, 19(1): 1-7
  3. Bhatnagar, A., Sillanpa a, M., Witek-Krowiak, A., (2015). Agricultural waste peels as versatile biomass for water purification e a review. Chem. Eng. J., 270, 244e271
  4. Camacho, A., Giles, M., & Ortegón, A. (2009). Método para la determinación de bacterias coliformes, coliformes fecales y Escherichia coli por la técnica de diluciones en tubo múltiple (Número más Probable o NMP).
  5. Castañeda, Y; Lopez, P.; Figueroa, Y.; Fuentes, J. (2009). Susceptibilidad a antibióticos de bacterias indicadoras de contaminación fecal aisladas de aguas y sedimentos marinos. Saber. 21 (1): 12-19.
  6. Chien, R.-C., Yen, M.-T., & Mau, J.-L. (2015). Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydrate Polymers. doi:10.1016/j.carbpol.2015.11.061.
  7. Clemente, A. R., Arrieta, E. L. C., & Mesa, G. A. P. (2013). Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes/Processos de tratamento de águas residuárias para a remoção de contaminantes orgânicos emergentes. Revista Ambiente & Água, 8(3), 93.
  8. Connor, R., Renata, A., Ortigara, C., Koncagül, E., Uhlenbrook, S., Lamizana-Diallo, B. M., & Hendry, S. (2017). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. The United Nations World Water Development Report.
  9. El-tahlawy, K. F., El-bendary, M. A., Elhendawy, A. G., & Hudson, S. M. (2005). The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate Polymers, 60, 421-430.
  10. Fernández de Castro, L. Mengíbar, M. Sánchez, A. Arroyo, L. Villarán, M.C. Díaz de Apodaca, E. Heras, A. (2016). Films of chitosan and chitosan-oligosaccharide neutralized and thermally treated: Effects on its antibacterial and other activities, LWT-Food Sci. Technol. 73: 368-374.
  11. Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104, 6017-6084.
  12. Li, Z., Yang, F., Yang, R. (2015). Synthesis and characterization of chitosan derivatives with dualantibacterial functional groups. International Journal of Biological Macromolecules, 75, 378–387.
  13. Lizarazo Becerra, J. M., & Orjuela Gutiérrez, M. I. (2013). Sistemas de plantas de tratamiento de aguas residuales en Colombia (Doctoral dissertation, Universidad Nacional de Colombia).
  14. Malayoglu, U. (2017). WITHDRAWN: Removal of heavy metals by biopolymer (chitosan)/nanoclay composites.
  15. Mamma, D., Christakopoulos, P., (2014). Biotransformation of Citrus By-Products into Value Added Products. Waste and Biomass Valorization 5, 529–549.
  16. Mantilla, J., Pulido, M., & Jaime, J. (2010). Prueba de sensibilidad antimicrobiana de cepas de Salmonella grupo D (móviles e inmóviles) aisladas de ponedoras comerciales en Colombia. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 57(3), 159.
  17. No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65-72.
  18. Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., & Du, Y. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63, 367-374.
  19. Severino, R., Ferrari, G., Vu, K. D., Donsì, F., Salmieri, S., & Lacroix, M. (2015). Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control, 50, 215-222.
  20. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133-164). Springer Basel.
  21. Thebe, T. A., & Mangore, E. N. (2012). Wastewater production, treatment, and use in Zimbabwe. Department of Civil and Water Engineering, National University of Science and Technology, Bulawayo.
  22. Verlee, A.; Mincke, S.; Stevens, C. V. (2017). Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives. Carbohydr. Polym., 164, 268–283 DOI: 10.1016/j.carbpol.2017.02.001.
  23. Yuan, G., Lv, H., Tang, W., Zhang, X., & Sun, H. (2016). Effect of chitosan coating combined with pomegranate peel extract on the quality of Pacific white shrimp during iced storage. Food Control, 59, 818-823.
  24. Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, (2016). Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem.; 190: 1174–81