Vol. 21 No. 4 (2019)
Original articles

Experimental research of a high efficiency natural convection double-flow solar air heater

José Quiñonez Choquecota
National University of the Altiplano Puno Peru

Published 2019-10-25

Keywords

  • corrugated absorbent V,
  • natural convection,
  • v,
  • solar air heater,
  • thermal efficiency

How to Cite

Quiñonez Choquecota, J. . (2019). Experimental research of a high efficiency natural convection double-flow solar air heater. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(4), 274-282. https://doi.org/10.18271/ria.2019.504

Abstract

The design, construction and evaluation of a parallel dual-flow air heater solar collector that has the V-shaped corrugated absorbent plate and that works by natural convection is presented. The collector has been evaluated for clear sky when installed on a vertical wall in the city of Puno, oriented towards the geographical north in the autumn season. The performance parameters allowed to obtain high efficiency and the construction is low cost. The maximum outlet air temperature of the collector reached 95,7 ºC for a solar intensity of 758 W/m2, and the average mass flow for sunny days was 0,0094 kg/s, in addition it was found that the mass flow is very sensitive to air velocity and density. The average efficiency of the collector is 51,1% which represents a good performance since it extracts a large amount of completely passive thermal energy without requiring additional external energy. The designed collector is respectful with the environment and is designed to meet the energy demands in frigid regions, it can operate more efficiently in the autumn and winter periods because it has a higher incidence angle at this time.

 

References

  1. Alam, T., y Kim, M.-H. (2017). Performance improvement of double-pass solar air heater – A state of art of review. Renewable and Sustainable Energy Reviews, 79, 779-793. doi:https://doi.org/10.1016/j.rser.2017.05.087
  2. ASHRAE-Standard. (93-2003). Methods of Testing to Determine the Thermal Performance of Sollar Collectors. American Socienty of Heating, Refrigeration, and Air Conditioning Engineers.
  3. Cuzminschi, M., Gherasim, R., Girleanu, V., Zubarev, A., y Stamatin, I. (2018). Innovative thermo-solar air heater. Energy and Buildings, 158(1), 964–970. doi:https://doi.org/10.1016/j.enbuild.2017.10.082
  4. Duffie, J. A., y Beckman, W. A. (2013). Solar Engineering of Thermal Processes (4 ed., 10.1002/9781118671603): John Wiley & Sons, Ltd.
  5. El-Sebaii, A. A., Aboul-Enein, S., Ramadan, M. R. I., Shalaby, S. M., y Moharram, B. M. (2011). Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy, 36(2), 1076-1086. doi:https://doi.org/10.1016/j.energy.2010.11.042
  6. Forson, F. K., Nazha, M. A. A., y Rajakaruna, H. (2003). Experimental and simulation studies on a single pass, double duct solar air heater. Energy Conversion and Management, 44(8), 1209–1227. doi:https://doi.org/10.1016/S0196-8904(02)00139-5
  7. Fudholi, A., y Sopian, K. (2019). A review of solar air flat plate collector for drying application. Renewable and Sustainable Energy Reviews, 102, 333-345. doi:https://doi.org/10.1016/j.rser.2018.12.032
  8. González, S. M., Larsen, S. F., Hernández, A., y Lesino, G. (2014). Thermal Evaluation and Modeling of a Double-pass Solar Collector for Air Heating. Energy Procedia, 57, 2275-2284. doi:https://doi.org/10.1016/j.egypro.2014.10.235
  9. Hatami, N., y Bahadorinejad, M. (2008). Experimental determination of natural convection heat transfer coefficient in a vertical flat-plate solar air heater. Solar Energy, 82(10), 903–910. doi:https://doi.org/10.1016/j.solener.2008.03.008
  10. Hegazy, A. A. (2000). Performance of flat plate solar air heaters with optimum channel geometry for constant/variable flow operation. Energy Conversion & Management, 41(4), 401-417. doi:https://doi.org/10.1016/S0196-8904(99)00052-7
  11. Hernández, A. L., y Quiñonez, J. E. (2013). Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow. Renewable Energy, 55, 380-391. doi:https://doi.org/10.1016/j.renene.2012.12.050
  12. Hernández, A. L., y Quiñonez, J. E. (2018). Experimental validation of an analytical model for performance estimation of natural convection solar air heating collectors. Renewable Energy, 117, 202-216. doi:https://doi.org/10.1016/j.renene.2017.09.082
  13. Jha, R. K., Choudhury, I. C., Gargi, I. H. P., y Zaidp, Z. H. (1992). Performace Prediction of a Solar Heated House. Energy Convers, 33(4), 263-273. doi:https://doi.org/10.1016/0196-8904(92)90117-F
  14. Karim, M. A., Perez, E., y Amin, Z. M. (2014). Mathematical modelling of counter flow v-grove solar air collector. Renewable Energy, 67, 192-201. doi:https://doi.org/10.1016/j.renene.2013.11.027
  15. Kreith, F., Manglik, R. M., y Bohn, M. S. (2012). Principios de transferencia de calor (7 ed.): Cengage Learning.
  16. Mzad, H., Bey, K., y Khelif, R. (2019). Investigative study of the thermal performance of a trial solar air heater. Case Studies in Thermal Engineering, 13, 100373. doi:https://doi.org/10.1016/j.csite.2018.100373
  17. Ong, k. S. (1995). Thermal performance of solar air heaters: Mathematical model and solution procedure. Solar Energy, 55(2), 93-109. doi:https://doi.org/10.1016/0038-092X(95)00021-I
  18. Pawar, R. S., Takwale, M. G., y Bhide, V. G. (1994). Evaluation of the Performance of the Solar Air Heater. Energy Convers, 35(8), 699-708. doi:https://doi.org/10.1016/0196-8904(94)90054-X
  19. Saha, S. N., y Sharma, S. P. (2018). Performance Evaluation of Corrugated Absorber Double Flow Solar Air Heater Based on Energy, Effective and Exergy Efficiencies. International Journal of Mechanical & Mechatronics Engineering, 17(1), 63-76. http://ijens.org/Vol_17_I_01/172201-3535-IJMME-IJENS.pdf
  20. Saravanakumar, P. T., Somasundaram, D., y Matheswaran, M. M. (2019). Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles. Solar Energy, 180, 360-371. doi:https://doi.org/10.1016/j.solener.2019.01.036
  21. Sevik, S., y Abuska, M. (2019). Thermal performance of flexible air duct using a new absorber construction in a solar air collector. Applied Thermal Engineering, 146(5), 123-134. doi:https://doi.org/10.1016/j.applthermaleng.2018.09.100
  22. Sharma, N. Y., Madhwesh, N., y Karanth, K. V. (2019). The Effect of Flow Obstacles of Different Shapes for Generating Turbulent Flow for Improved Performance of the Solar Air Heater. Procedia Manufacturing, 35, 1096-1101. doi:https://doi.org/10.1016/j.promfg.2019.06.062
  23. Sharma, S. P., y Saha, S. N. (2017). Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber. World Academy of Science, Engineering and Technology, International Journal of Energy and Power Engineering, 11(7), 855 - 861. doi:https://doi.org/10.5281/zenodo.1131465
  24. Singh Bisht, V., Kumar Patil, A., y Gupta, A. (2018). Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews, 81, 954-977. doi:https://doi.org/10.1016/j.rser.2017.08.036
  25. Singh, I., y Singh, S. (2018). A review of artificial roughness geometries employed in solar air heaters. Renewable and Sustainable Energy Reviews, 92, 405-425. doi:https://doi.org/10.1016/j.rser.2018.04.108
  26. Singh Patel, S., y Lanjewar, A. (2019). Experimental and numerical investigation of solar air heater with novel V-rib geometry. Journal of Energy Storage, 21, 750-764. doi:https://doi.org/10.1016/j.est.2019.01.016
  27. Singh, S., Dhruw, L., y Chander, S. (2019). Experimental investigation of a double pass converging finned wire mesh packed bed solar air heater. Journal of Energy Storage, 21, 713-723. doi:https://doi.org/10.1016/j.est.2019.01.003