Vol. 22 No. 4 (2020)
Short article

Reaction of Chenopodium quinoa to different species of Meloidogyne

Maria Yaquelin Mendoza-Lima
Universidad Nacional de San Agustín de Arequipa, Peru
Teodocia Gloria Casa-Ruiz
Universidad Nacional de San Agustín de Arequipa, Peru
Cristiano Bellé
Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil

Published 2020-10-01

Keywords

  • Quinoa,
  • genotypes,
  • root-knot nematode,
  • resistance,
  • susceptibility

How to Cite

Mendoza-Lima, M. Y. ., Casa-Ruiz, T. G. ., & Bellé, C. (2020). Reaction of Chenopodium quinoa to different species of Meloidogyne. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 343–346. https://doi.org/10.18271/ria.2020.196

Abstract

Currently, there are no studies on the cultivation of quinoa (Chenopodium quinoa) in Peru related to the reaction ofMeloidogynespp. Thisstudy aimed to evaluate the reaction of five quinoa cultivars (‘Salcedo INIA’, ‘Choclito’, ‘Huariponcho’, ‘Negra Collana’, and ‘Kcancolla’)toMeloidogyne arenaria, Meloidogyne incognita,andMeloidogyne hapla. The experiment was carried out using a completely randomizeddesign, with five quinoa cultivars and three species ofMeloidogynespp. with six repetitions. Quinoa plants were kept in a mesh house andplaced in polyethylene bags with 3,000 dm³ of sterile soil inoculated with 5,000 eggs + juveniles (J2). After 90 days of inoculation, thenumber of nematodes per gram of root, number of galls, and the reproduction factor (final population/initial population) were determined.All quinoa cultivars were susceptible toM. incognitaand resistant toM. arenariaandM. hapla,except for ‘Negra Collana’, which wassusceptible toM. arenaria, and ‘Salcedo INIA’ and ‘Huariponcho’, susceptible toM. hapla.

References

  1. Asmus, G. L. & Andrade, P. J. M. (2001). Reprodução do nematóide das galhas (Meloidogyne javanica) em algumas plantas alternativas para uso em sucessão à cultura da soja. Comunicado Técnico 37. Accessed August 21, 2020. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/62572/1/ COT-37-2001.pdf.
  2. Asmus, G. L., Inomoto, M. M., Sazaki, C. S. & Ferraz, M. A. (2005). Reação de algumas culturas de cobertura utilizadas no sistema plantio direto a Meloidogyne incognita. Nematologia Brasileira, 29(1), 47–52.
  3. Bedoya-Perales N. S., Pumi, G., Mujica, A., Talamini, E. & Padula, A. D. (2018). Quinoa expansion in Perú and its implications for land use management. Sustainability, 10(2), 532. https://doi.org/10.3390/su10020532.
  4. Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant’Ana, H. M., Chaves, J. B. P. & Coimbra, J. S. D. R. (2017). Quinoa: nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618–1630. https://doi.org/10.1080/10408398.2014.1001811.
  5. Franco, J. (2003). Parasitic nematodes of quinoa in the Andean region of Bolivia. Food Reviews International, 19(1-2), 77– 85. https://doi.org/10.1081/FRI-120018869.
  6. Hussey, R. S. & Barker, K. B. 1973. A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Disease 57, 1025–1028.
  7. Jarvis D. E., Kopp, O. R., Jellen, E. N., Mallory, M. A., Pattee, J., Bonifacio, A., Coleman, C. E., Stevens, M. R., Fairbanks, D.
  8. J. & Maughan, P. J. (2008). Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). Journal of Genetics, 87(1), 39–51. https://doi.org/10.1007/s12041-008-0006-6.
  9. León T. B., Ortiz, C. N., Condori, T. N. & Chura, Y. E. (2018). Cepas de Trichoderma con capacidad endofítica sobre el control del mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de quinua . Revista de Investigaciones Altoandinas, 20(1), 19–30. http://dx.doi.org/10.18271/ria.2018.327.
  10. Lima-Medina I., Bravo-Portocarrero, R. Y. & Mamani-Cano, Z. D. (2019). Nematodos fitoparásitos asociados al cultivo de quinua en la región de Puno, Perú. Revista de Investigaciones Altoandinas, 21(4): 257–263. http://dx.doi.org/10.18271/ria.2019.502.
  11. Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371–376. http://doi.org/10.1016/j.jcs.2016.05.004.
  12. Novak, V., Du, J, & Charrondière, R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry. 193, 47–54. https://doi.org/10.1016/j.foodchem.2015.02.111.
  13. Oostenbrink, R. (1966). Major characteristics of the relationship between nematodes and plants. Medeelingen der Landbouw-Hoogeschool.
  14. Palomo-Herreda, A. (2018). Reproduction of Meloidogyne incognita (Kofoid & White) Chitwood in seven varieties of quinoa (Chenopodium quinoa Willd.) in a greenhouse [Master’s dissertation, Universidad Agraria La Molina de Lima, Peru]. http://repositorio.lamolina.edu.pe/handle/UNALM/3602.
  15. Pereira E., Barros, L., Zelada, C. E., Barron, U. G., Cadavez, V. and Ferreira, I. C. F. R. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: a good alternative to nutritious food. Food Chemistry 280, 110–114. https://doi.org/10.1016/j.foodchem.2018.12.068.
  16. Vargas D. E., Boada, M., Araca, L., Vargas, W. & Vargas, R. (2015). Agrobiodiversidad y economía de la quinua (Chenopodium quinoa) en comunidades aymaras de la cuenca del Titicaca. Idesia, 33(4), 81–87. http://dx.doi.org/10.4067/S0718-34292015000400011.