Vol. 23 No. 2 (2021)
Original articles

Optimization of a formulation of dry sweet butifarra made with LLama meat, pecans and kañiwa

Bettit Karim Salvá Ruiz
Universidad Nacional Agraria
Carlos Elías Peñafiel
https://orcid.org/0000-0002-5857-2058
Judith Larico Condori
https://orcid.org/0000-0001-9373-0122

Published 2021-04-15

Keywords

  • optimization,
  • mathematical models,
  • food industry,
  • meat

How to Cite

Salvá Ruiz, B. K., Elías Peñafiel, C., & Larico Condori, J. (2021). Optimization of a formulation of dry sweet butifarra made with LLama meat, pecans and kañiwa. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 23(2), 77-84. https://doi.org/10.18271/ria.2021.232

Abstract

In the formulation of dried sweet sausage, pork meat and fat are traditionally used, which can be replaced by healthy products such as pecans (Carya illinoinensis) and kañiwa (Chenopodium pallidicaule); as well as llama meat (Lama glama) that is low in fat and cholesterol. For this reason, the present investigation aimed to optimize a formulation of dried sweet sausage considering three main components: llama meat, kañiwa flour and pecans. The D-Optimal mixture design method of the Design-Expert®7 program was applied, obtaining fourteen formulations. For each formulation, color, water activity and texture profile were evaluated. Only the cohesiveness fit a meaningful mathematical model. Subsequently, the optimization of the variable response was carried out, using the desirability function of the "objective value" type, so that the product could resemble the target (sausage made with pork meat and fat). In the sensory analysis of the optimal formulation, four sensory attributes were evaluated: color, odor, taste and texture, in a Z test to demonstrate whether the sample mean of the degree of satisfaction for each attribute of the product was acceptable or not. All these attributes are believed to be above the population mean taken as a target. In conclusion, the optimal formula was composed of 80% llama meat and 20% pecans, observing that kañiwa flour did not improve the texture and color of the sausage.

References

  1. Atanasov, A. G., Sabharanjak, S. M., Zengin, G., Mollica, A., Szostak, A., Simirgiotis, M., Huminiecki, Ł., Horbanczuk, O. K., Nabavi, S. M., y Mocan, A. (2018). Pecan nuts: A review of reported bioactivities and health effects. Trends in Food Science & Technology, 71, 246–257. https://doi.org/10.1016/j.tifs.2017.10.019
  2. Bis-Souza, C. V., Penna, A. L. B., y da Silva Barretto, A. C. (2020). Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: in vitro screening and technological evaluation. Meat Science, 108186. https://doi.org/10.1016/j.meatsci.2020.108186
  3. Casafont, M. L., y i Olivé, J.-M. R. (2019). Alimentació i gastronomia al diccionari normatiu. Terminàlia, 7–16. http://revistes.iec.cat/index.php/Terminalia/article/view/145857
  4. Castro, L., Quispe, F., Suca, F., Villa, Y., y Zegarra, J. (2019). Optimization in the elaboration of an energy bar based on germinated quinoa (Chenopodium quinoa Willdenow). Agroindustrial Science, 9(2), 163–172. https://doi.org/10.17268/agroind.sci.2019.02.09
  5. Chirinos, R., Ochoa, K., Aguilar-Galvez, A., Carpentier, S., Pedreschi, R., y Campos, D. (2018). Obtaining of peptides with in vitro antioxidant and angiotensin I converting enzyme inhibitory activities from cañihua protein (Chenopodium pallidicaule Aellen). Journal of Cereal Science, 83, 139–146. https://doi.org/10.1016/j.jcs.2018.07.004
  6. Criscitiello, M. F., Kraev, I., y Lange, S. (2020). Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)—Novel insights into camelid immunity. Molecular Immunology, 117, 37–53. https://doi.org/10.1016/j.molimm.2019.10.017
  7. de Carvalho, F. A. L., Munekata, P. E. S., de Oliveira, A. L., Pateiro, M., Domínguez, R., Trindade, M. A., y Lorenzo, J. M. (2020). Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Research International, 136, 109487. https://doi.org/10.1016/j.foodres.2020.109487
  8. Devices, D. (2015). Inc. Aqualab Water Activity Meter for Serie 4, 4TE, 4TEV. version 09/05/15) USA: Decagon Dev. Inc. http://www.ictinternational.com/content/uploads/2014/04/13484_AquaLab-Series-Four_Web.pdf
  9. Dussán-Sarria, S., Garzón-García, A. M., y Melo-Sevilla, R. E. (2020). Development and evaluation of a color measurement prototype in fresh vegetables. Información Tecnológica, 31(1), 253–260. https://doi.org/10.4067/S0718-07642020000100253
  10. Fernández-Diez, A., Caro, I., Castro, A., Salvá, B. K., Ramos, D. D., y Mateo, J. (2016). Partial Fat Replacement by Boiled Quinoa on the Quality Characteristics of a Dry-Cured Sausage. Journal of Food Science, 81(8), C1891–C1898. https://doi.org/10.1111/1750-3841.13393
  11. Fernández-López, J., Viuda-Martos, M., y Pérez-Alvarez, J. A. (2021). Quinoa and chia products as ingredients for healthier processed meat products: Technological strategies for their application and effects on the final product. Current Opinion in Food Science, 40, 26-32. https://doi.org/10.1016/j.cofs.2020.05.004
  12. González, B. M. F., y Totosaus, A. (2017). Textura y aceptación de salchichas cocidas utilizando un oleogel de aceite de soya o manteca de semilla de calabaza como reemplazo de grasa [Tesis profesional, Tecnológico de Estudios Superiores de Ecatepec]. bit.ly/3bKFcrj
  13. Granados-Conde, C., Torrenegra-Alarcon, M., Leon-Mendez, G., Pineda, Y. A., Jimenez-Nieto, J., y Carriazo-Marmolejo, L. (2020). Deshidratación osmótica método alternativo de conservación de alimentos. @limentech, Ciencia y Tecnología Alimentaria, 17(2), 101–114. http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/ALIMEN/article/view/4005/2263
  14. Guerra, D., y Pozo, P. (2018). Análisis proximal y perfil de aminoácidos del aislado proteico del chocho andino ecuatoriano (Lupinus mutabilis). infoANALÍTICA, 6(1), 55–66. https://dialnet.unirioja.es/servlet/articulo?codigo=7113389
  15. Hélder, F., Lema, C., Vítor, D., Ramalheira, M., y Bragança, M. (2020). Influência dos métodos de preservação na composição química e atividade antioxidante de pólen apícola [Teses de Mestrado, Instituto Politécnico de Bragança]. https://bibliotecadigital.ipb.pt/handle/10198/22885
  16. Ivorra, A. (2020). Uso de la quinoa (Chenopodium quinoa) en el desarrollo de productos cárnicos funcionales [Trabajo de fin de grado, Universidad Miguel Hernández de Elche]. http://dspace.umh.es//handle/11000/6537
  17. Kılıç, B., y Özer, C. O. (2017). Effects of replacement of beef fat with interesterified palm kernel oil on the quality characteristics of Turkish dry-fermented sausage. Meat Science, 131, 18–24. https://doi.org/10.1016/j.meatsci.2017.04.020
  18. Kumar, P., Verma, A. K., Kumar, D., Umaraw, P., Mehta, N., y Malav, O. P. (2019). Chapter 11 - Meat Snacks: A Novel Technological Perspective. En C. Galanakis (ed.), Innovations in Traditional Foods (pp. 293–321). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814887-7.00011-3
  19. Mahachi, L. N., Rudman, M., Arnaud, E., Muchenje, V., y Hoffman, L. C. (2019). Development of semi dry sausages (cabanossi) with warthog (Phacochoerus africanus) meat: Physicochemical and sensory attributes. LWT, 115, 108454. https://doi.org/10.1016/j.lwt.2019.108454
  20. Popova, T., Tejeda, L., Peñarrieta, J. M., Smith, M. A., Bush, R. D., y Hopkins, D. L. (2021). Meat of south American Camelids-Sensory quality and nutritional composition. Meat Science, 171, 108285. https://doi.org/10.1016/j.meatsci.2020.108285
  21. Rábago-Panduro, L. M., Martín-Belloso, O., Welti-Chanes, J., y Morales-de la Peña, M. (2020). Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage. Revista Mexicana de Ingeniería Química, 19(3), 1439–1452. https://doi.org/10.24275/rmiq/Alim1149
  22. Ramírez, E. J. P., López, R. R., Borbón, M. I. R., y Mandujano, H. A. T. (2016). Aplicación del diseño por mezclas en la industria alimentaria. Cultura Científica y Tecnológica, 56, 140-151. http://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/809
  23. Ramos Ramírez, M. E., Jordán, O., Tuesta, T., Silva, M., Silva, R., y Salvá, B. (2020). Physicochemical, mechanical and sensory characteristics of cabanossi-type dry sausages made with llama (Lama glama) and pork (Sus scrofa domestica) meat. Revista Chilena de Nutrición, 47(3), 411–422. https://doi.org/10.4067/S0717-75182020000300411
  24. Ramos Ramírez, M., Jordán Suárez, O., Jaimes, M. S., y Salvá Ruiz, B. (2019). Optimización de la formulación de cabanossi con carne de llama (Lama glama) y papa (Solanum tuberosum) mediante el diseño de mezclas. Revista de Investigaciones Altoandinas, 21(1), 15–28. http://dx.doi.org/10.18271/ria.2019.442.
  25. Vidaurre-Ruiz, J. M., Salas-Valerio, W. F., y Repo-Carrasco-Valencia, R. (2019). Propiedades de pasta y texturales de las mezclas de harinas de quinua (Chenopodium quinoa), kiwicha (Amaranthus caudatus) y tarwi (Lupinus mutabilis) en un sistema acuoso. Revista de Investigaciones Altoandinas , 21(1), 5–14. https://doi.org/10.18271/ria.2019.441
  26. Wang, X., Xu, M., Cheng, J., Zhang, W., Liu, X., y Zhou, P. (2019). Effect of Flammulina velutipes on the physicochemical and sensory characteristics of Cantonese sausages. Meat Science, 154, 22–28. https://doi.org/10.1016/j.meatsci.2019.04.003
  27. Zegarra, S., Muñoz, A. M., y Ramos-Escudero, F. (2019). Elaboración de un pan libre de gluten a base de harina de cañihua (Chenopodium pallidicaule Aellen) y evaluación de la aceptabilidad sensorial. Revista Chilena de Nutrición, 46(5), 561–570. http://dx.doi.org/10.4067/S0717-75182019000500561