Vol. 24 No. 2 (2022)
Case report

Level of soil contamination with arsenic and heavy metals in Tiquillaca (Peru)

Benito Hugo Fernandez Ochoa
UNAP
Eliana Mullisaca Contreras
Facultad de Ciencias de Ingenierías, Universidad Nacional de Juliaca, Perú.
Luz Elizabeth Huanchi Mamani
Facultad de Ciencias de Ingenierías, Universidad Nacional de Juliaca, Perú.

Published 2022-05-16

Keywords

  • Keywords: Geoaccumulation índex, organic matter, heavy metals, pH

How to Cite

Fernandez Ochoa, B. H., Mullisaca Contreras, E., & Huanchi Mamani , L. E. . (2022). Level of soil contamination with arsenic and heavy metals in Tiquillaca (Peru). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 24(2), 131-138. https://doi.org/10.18271/ria.2022.416

Abstract

 

The Andes plays an important role in the providing of ecosystem services, however, the greatest threat it faces today is soil contamination by heavy metals, which constitutes a risk in the interaction of man and the environment, in this understanding it is necessary to promote research in the mountainous region in activities that contravene the sustainable development of the region. In this sense, the objective of this study is to evaluate the level of soil contamination by heavy metals by means of the geo-accumulation index and to predict the influence of pH and organic matter on the distribution of metals in the soil. The methodology involved the extraction of four soil samples obtained in an area adjacent to the Paxa stream, where mining waste was dumped; the total concentration of Arsenic, Barium, Cadmium, Copper, Chromium, Lead, Nickel and Zinc was evaluated by the optical emission spectrophotometry method, pH and organic matter by potentiometry and colorimetry, respectively. The results showed geo-accumulation indices for As, Cd, and Pb with moderately to heavily contaminated (class 1, 2 and 3, respectively).In contrast, soils were not contaminated with Ba, Cr, Cu, Ni and Zn (class 0), which represents a risk for the Andean ecosystem, given the acidic characteristics of the soil (4.08) and minimum organic matter content (0.9%), which will promote the solubility and mobility of heavy metals in the ground.

References

  1. Amaro-Espejo, I. A., Del Refugio Castañeda-Chávez, M., Murguía-González, J., Lango-Reynoso, F., Patricia Bañuelos-Hernández, K., & Galindo-Tovar, M. E. (2020). Geoaccumulation and ecological risk indexes in papaya cultivation due to the presence of trace metals. Agronomy, 10. https://doi.org/doi:10.3390/agronomy10020301.
  2. Ahmed, I., Helal, A. N., Gamal, R., & Nehal, O. S. (2015). Influence of some organic ligands on the adsorption of lead by agricultural soil. Arabian Journal of Chemistry. doi:http:// dx.doi.org/10.1016/j.arabjc.2015.03.012
  3. Alvim, M., & Lourenço, J. (2000). Influence of organic matter content of contaminated soils on the leaching rate of heavy metals. Environmental Progress, 19(1), 53-58. doi:10.1002/ep.670190118
  4. Beaver, B., Beaver, R., & Mendenhall, W. (2010). Introducción a la probabilidad y estadística. In Cengage Learning (13a edición). https://www.fcfm.buap.mx/jzacarias/cursos/estad2/libros/book5e2.pdf
  5. Bedoya-Gómez, B. D., Dossman-Gil, M. A., & Marín-Fernández, J. (2021). Valoración ecológica de los servicios ecosistémicos prestados por el suelo en fincas cafeteras en Belén de Umbría, Colombia. Revista de Ciencias Ambientales, 55(1), 160–185. https://doi.org/10.15359/rca.55-1.8.
  6. Bu, J., Xu, Y., Ma, R., Wei, W., & Liu, M. (2016). Heavy metals in surface soils in the upper reaches of the Heihe River, northeastern Tibetan Plateau, China. International Journal of Environmental Research and Public Health, 19. doi:10.3390/ijerph13030247
  7. Burbano, H. (2016). El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Revista de Ciencias Agrícolas, 33(2), 117–124. https://doi.org/doi: http://dx.doi.org/10.22267/rcia.163302.58.
  8. Canadian Council of Ministers of the Environment,CCME(2007). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. https://www.esdat.net/environmental tandards/Canada/soil/rev_soil_summary_tbl_7.0_e.pdf
  9. Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 143–153. https://doi.org/doi:10.3390/agronomy10020301
  10. Cui, X., Geng, Y., Sun, R., Xie, M., Feng, X., Li, X., & Cui, Z. (2021). Distribution, speciation and ecological risk assessment of heavy metals in Jinan Iron & Steel Group soils from China. Journal of Cleaner Production, 295:126-50, 9. https://doi.org/10.1016/j.jclepro.2021.126504
  11. Environmental Protection Agency, EPA (1992). Guide to Site and Soil Description for Hazardous Waste Site Characterization Volume 1 : Metals by. http://nepis.epa.gov/Adobe/PDF/200097F6.pdf
  12. Enviromental Protection Agency, EPA. (2004). Method 9045D. http://eprints.uanl.mx/5481/1/1020149995.PDF
  13. Escobar-Mamani, F., Branca, D., & Haller, A. (2020). Vista de investigación de montaña sobre y para la región andina _ Revista de Investigaciones Altoandinas.pdf. Journal of High Andean Research, 22(4), 311–312. https://doi.org /10.18271/ria.2020.191
  14. He, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 134, 135–225. https://doi.org10.1016/bs.agron.2015.06.005
  15. Hiller, E., Petrák, M., Tóth, R., Lalinská-Voleková, B., Jurkovič, Ľ., Kučerová, G., Radková, A., Šottník, P., & Vozár, J. (2013). Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Environ Sci and Pollut Res, 20:7627-76. https://doi.org s11356-013-1581-5 MINING
  16. Huaraca-Fernandez, J. N., Pérez-Sosa, L., Bustinza-Cabala, L. S., & Pampa-Quispe, N. B. (2020). Organic amendments in the immobilization of cadmium in contaminated agricultural soils: A review. Informacion Tecnologica, 31:139-152. https://doi.org//10.4067/S0718-07642020000400139
  17. Kabata Pendias, A., & Pendias, H. (2000). Trace elements in soils and plant. In Boca Raton (Third Edit).
  18. Kicińska, A., & Wikar, J. (2021). Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry - example from southern Poland. Soil and Tillage Research, 205(April 2020). https://doi.org/10.1016/j.still.2020.104817.
  19. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090.
  20. Liu, J. W. (2016). Thallium transformation and partitioning during Pb-Zn smelting and environmental implications. Environ, 77-89. doi:https://doi.org/10.1016/j.envpol.2016.01.046
  21. Liu, T., Li, F., Jin, Z., & Yang, Y. (2018). Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil. Environmental Pollution, 238:, 359–368. https://doi.org/https://doi.org/10.1016/j.envpol.2018.03.022
  22. López, M., Del Rincón, M., Muñoz, C., Ruiz, G., Solís, S., & Zanor, G. A. (2017). Evaluación de la contaminación por elementos traza en suelos agrícolas del suroeste de Guanajuato, México. Acta Universitaria, 27:10-21. https://doi.org/doi: 10.15174/ au.2017.138
  23. Loska, K., Wiechulła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165. https://doi.org/doi:10.1016/S0160-4120(03)00157-0
  24. Ministerio del Ambiente,MINAM (2014). Guía para el muestreo de suelos. http://www.minam.gob.pe/wp-content/uploads/2018/07/GUIA-PARA-EL-MUESTREO-DE-SUELO.pdf
  25. Montenegro, G., Fredes, C., Mejías, E., Bonomelli, C., & Olivares, L. (2009). Contenidos de metales pesados en suelos cercanos a un relave cuprífero chileno. Agrociencia, 43(4), 427–435. http://www.scielo.org.mx/pdf/agro/v43n4/v43n4a9.pdf
  26. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2(108-118)
  27. Taylor, S., & Mclennan, S. (1995). The geochemical the continental evolution crust. In Reviews in Mineralogy and Geochemistry. https://doi.org/https://doi.org/10.1029/95RG00262
  28. Watts, B. K. (2019). mine tailings in an African tropical environment— mechanisms for the bioavailability of heavy metals in soils. Environ Geochem Health, 1-26. doi:https://doi.org/10.1007/s10653-019-00326-2
  29. Yin, H., Tan, N., Liu, C., Wang, J., Liang, X., Qu, M., Feng, X., Qiu, G., Tan, W., & Liu, F. (2016). The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining áreas in Guangdong Province, China. Chemosphere, 161, 181–189. https://doi.org/http://dx.doi.org/10.1016/j.chemosphere.2016.07.018
  30. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of