Valorization of Mining Waste as Aggregates for Road Construction: Circular Economy in the Andean Region of Peru
Published 2024-05-02
Keywords
- Mining,
- Mining Liabilities,
- Construction,
- Circular Economy,
- Sustainable Development
Copyright (c) 2024 Del Piero Raphael Arana Ruedas, Yovana Torres Gonzales, Raquel Gonzales Cabrera, Isaac Abraham Cotera Nuñez
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Mining is the largest economic activity in Peru, contributing a considerable percentage of the country’s Gross Domestic Product. However, the process of this activity evidences several socio-environmental conflicts. The generation of mining waste or expressed as mining tailings from the various processes is a latent threat that affects the spheres of sustainable development. The objective of this study was to propose the valorization of mining tailings as aggregates for road construction in the Andean region of Peru under a circular economy approach. Consequently, several analyses were carried out to evaluate its viability, such as the meteorological factor of precipitation, acidity or alkalinity, elements present in the sample, granulometry, California Bearing Ratio (CBR) and Marshall test. The results have shown that the proposal complies with the parameters established at the national level with a stability of 877.67 kg and a 25% utilization of mine tailings. In conclusion, the use of mine tailings as aggregates for construction is a viable proposal for road construction under a circular economy approach. Finally, the analysis of the valorization of mining waste in other elements of the construction sector is recommended to continue promoting the circular economy and sustainable development.
References
- Antony, F., & Terrones, Z. (2024). Estabilización de la subrasante arenosa con ceniza de cebada y yeso en una localidad costera peruana Stabilization of sandy subgrade with barley ash and gypsum in a peruvian coastal locality Introducción. 4–11. https://doi.org/10.15517/iv.v26i45.56066
- Arana Ruedas, D. P. R., Soto Guerra, L., Popli, K., & Gambo Madaki, S. (2023). Spatio-Temporal Drought Assessment Using Standardized Precipitation Evapotranspiration Index (SPEI) over Mantaro Valley, Peru. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 25(3), 159–170. https://doi.org/10.18271/ria.2023.525
- Araya, N., Ramírez, Y., Cisternas, L. A., & Kraslawski, A. (2021). Use of real options to enhance water-energy nexus in mine tailings management. Applied Energy, 303(August), 117626. https://doi.org/10.1016/j.apenergy.2021.117626
- Bojacá Torres, D. C., & Campagnoli Martínez, S. X. (2022). CBR cíclico como método alternativo para la determinación del módulo resiliente en suelos blandos de subrasante. Ciencia e Ingeniería Neogranadina, 32(2), 85–98. https://doi.org/10.18359/rcin.5896
- Cajina Cruz, N. A., Baldi, A., Camacho Garita, E., & Aguiar Moya, J. P. (2021). Evaluación de desempeño de la mezcla asfáltica modificada con residuos de PVC tipo blíster. Infraestructura Vial, 23(42), 13–22. https://doi.org/10.15517/iv.v23i42.44688
- Calva Herrera, L. O., & Muñoz Pérez, S. P. (2022). Estabilidad y flujo de mezclas asfálticas en caliente incorporando escorias de acero. Infraestructura Vial, 24(43), 1–10. https://doi.org/10.15517/iv.v24i43.48421
- De La Cruz Vega, S. A., Ibañez Ccoapaza, C. E., & Coaquira Cueva, D. Y. (2022). Determinación de índice de serviciabilidad y capacidad resistente. Caso práctico: pavimentos en Azángaro, Puno, Perú. Infraestructura Vial, 24(43), 1–8. https://doi.org/10.15517/iv.v24i43.48563
- Fernandez Ochoa, B. H. (2022). Nivel de contaminación del suelo con arsénico y metales pesados en Tiquillaca (Perú). Revista de Investigaciones Altoandinas - Journal of High Andean Research, 24(2), 131–138. https://doi.org/10.18271/ria.2022.416
- Garcia-Troncoso, N., Baykara, H., Cornejo, M. H., Riofrio, A., Tinoco-Hidalgo, M., & Flores-Rada, J. (2022). Comparative mechanical properties of conventional concrete mixture and concrete incorporating mining tailings sands. Case Studies in Construction Materials, 16(January), e01031. https://doi.org/10.1016/j.cscm.2022.e01031
- Goli, A. (2022). The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Studies in Construction Materials, 16(December 2021), e00861. https://doi.org/10.1016/j.cscm.2021.e00861
- Hernández-Ramos, S. M., Trejo-Arroyo, D. L., Cholico-González, D. F., Rodríguez-Torres, G. M., Zárate-Medina, J., Vega-Azamar, R. E., León-Patiño, C. A., & Ortíz-Lara, N. (2024). Characterization and effect of mechanical and thermal activation in mining tailings for use as supplementary cementitious material. Case Studies in Construction Materials, 20(September 2023). https://doi.org/10.1016/j.cscm.2023.e02770
- Huaranga-Moreno, F. R., Truxillense, H., Méndez-García, E. F., & Bernuí-Paredes, F. (2021). Bioindicator species of contamination by mining tailings in the Samne Sector, La Libertad-Peru, 2021. Arnaldoa, 28(3), 633–650. http://www.scielo.org.pe/pdf/arnal/v28n3/2413-3299-arnal-28-03-633.pdf
- IIMP. (2023). Revista Minería 551. https://revistamineria.com.pe/mineria/551/40/
- Jara-Peña, E., Gómez, J., Montoya, H., Chanco, M., Mariano, M., & Cano, N. (2014). Capacidad ftorremediadora de cinco especies altoandinas de suelos contaminados con metales pesados. Revista Peruana de Biologia, 21(2), 145–154. https://doi.org/10.15381/rpb.v21i2.9817
- Luukkonen, R., Elina, N., & Becker, L. (2024). Consumer collectives in the circular economy : A systematic review and research agenda. 45(September 2023), 281–293. https://doi.org/10.1016/j.spc.2024.01.006
- Miguel, C., Santos, M. R. de D., Bianchini, A., & Vianna, M. R. M. (2022). Potential adverse effects of heavy metals on clinical health parameters of Caretta caretta from a nesting area affected by mining tailings in Brazil. Journal of Trace Elements and Minerals, 2(August), 100015. https://doi.org/10.1016/j.jtemin.2022.100015
- MINEM. (2023). Boletín Estadístico Minero. https://www.gob.pe/institucion/minem/informes-publicaciones/4745047-boletin-estadistico-minero-agosto-2023
- Münkel Jiménez, M., Aguiar Moya, J. P., Baldi, A., Hernández Montero, N., & Villegas Villegas, R. E. (2021). Efecto de polímeros y aceite de cocina en el rango de desempeño del asfalto. Infraestructura Vial, 23(42), 71–81. https://doi.org/10.15517/iv.v23i42.47587
- Muñoz, S. P., & Zevallos, F. de M. Y. (2021). Factores influyentes en la resistencia al deslizamiento en pavimentos flexibles. Ciencia Nicolaita, 83–99. https://www.cic.cn.umich.mx/cn/article/view/535
- Pérez-Vázquez, R. G., & Martín-Lago, R. (2021). Evaluación de metales preciosos (Au y Ag) en zonas de oxidación al noroeste de Artemisa (Cuba). Boletín de Geología, 43(1). https://doi.org/10.18273/revbol.v43n1-2021006
- Pineda-Martínez, Luis F; León-Cruz, J. F. C. N. (2020). Analysis of severe storms and tornado formation in the northern region of Mexico. Revista Bio Ciencias, 7(492), 15. https://doi.org/10.15741/revbio.07.e885
- Pretel, G. B. (2001). Pliego de prescripciones técnicas generales para obras de carreteras y puentes.
- Sandoval Vallejo, E. A., & Rivera Mena, W. A. (2019). Correlación del CBR con la resistencia a la compresión inconfnada. Ciencia e Ingeniería Neogranadina, 29(1), 135–152. https://doi.org/10.18359/rcin.3478
- Staub de Melo, J., Buzzi Torres, I., & Villena, J. (2019). Aplicación de enfoques de análisis y criterios de rotura en ensayos de fatiga y su influencia en la predicción de la vida útil de la capa de rodadura asfáltica en la estructura del pavimento. Revista Ingeniería de Construcción, 34(3), 268–277. https://doi.org/10.4067/s0718-50732019000300268
- Tumialán, P. E., Martinez, N. T., & Hinostroza, C. B. (2023). Acid mine water treatment using neutralizer with adsorbent material. 1–7.