Physicochemical and bacteriological characteristics of a high andean urban stream: Salcedo town, Puno, Peru
Published 2025-09-30
Keywords
- agroecosystem,
- Arequipa,
- invasive,
- weeds
Copyright (c) 2025 Humberto Peñaranda Barra, Alfredo Loza-Del Carpio, Jesús Miranda Mamani, Margot Reyes Orihuela

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Weeds are an omnipresent and costly problem for farmers in developing countries. They are considered opportunistic and unwanted plants that grow in crop fields, negatively affecting production yield. In Peru, studies on the species diversity and distribution of weeds found in the Andean region are scarce. In this work we contribute to the knowledge of weeds present in crops in the Characato district. To do so, weeds growing next to cultivated plants were collected, herbarium specimens were analyzed to identify them, and the geographic origin of the species was established through specialized bibliography and digital databases. 67 weed species were identified, grouped into 51 genera and 19 families, of which 60 species corresponded to Eudicotyledons and 7 species to Monocotyledons; The Brassicaceae family has the greatest diversity with 9 species, followed by Asteraceae (8), Poaceae (7), Solanaceae (6), Amaranthaceae (5), Fabaceae (4), Plantaginaceae (4) among other families. Of the total reported species, 30 (44.8%) are native and 37 (55.2%) are introduced. Finally, 5 species were found that are globally recognized for their negative impact on agriculture.
References
- Andrio, D., Asmura, J., Yenie, E., & Putri, K. (2019). Enhancing BOD5/COD ratio co-substrate tofu wastewater and cow dung during ozone pretreatment. MATEC Web of Conferences, 276. https://doi.org/10.1051/matecconf/201927606027
- APHA-AWWA, (American Public Health Association–American Water Works Association). (1999). Standards methods for the examination of water and wastewater. L. Clesceri, A. Greenberg, & A. Eaton (Eds.), Water Environment Federation (20th ed.).
- Atehortúa, D., Giraldo Buitrago, L. C., & Villegas Palacio, J. C. (2024). Impacto del uso del suelo urbano en la calidad fisicoquímica del agua de escorrentía superficial en una cuenca urbana. Revista EIA, 21(42). https://doi.org/10.24050/reia.v21i42.1749
- Benjumea-Hoyos, C. A., Ramírez, A. C., & Martínez, A. C. (2023). Calidad fisicoquímica y microbiológica de los ríos asociados a un embalse tropical de montaña en el periodo 2010-2018 (ríos Nare, Nusito y San Lorenzo). Revista Lasallista de Investigacion, 20(1), 103–122. https://doi.org/10.22507/rli.v20n1a7
- Cárdenas, G. L., & Sánchez, I. A. (2013). Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Universidad y Salud, 15(1), 72–88. bit.ly/4i0pQ1O
- Castañe, P., Loez, C., Olguin, H., Puig, A., Rovedatti, M., Topalian, M., & Salibian, A. (1998). Caracterización y variación espacial de parámetros fisicoquímicos y del plancton en un río urbano contaminado, (río Reconquista, Argentina). Revista Internacional de Contaminación Ambiental, 14(2), 69–77.
- Ccama, H. A. (2021). Crecimiento poblacional y cambios territoriales en el centro urbano de Salcedo, Puno. Espacio y Desarrollo, 51(37), 37–51. https://doi.org/10.18800/espacioydesarrollo.202101.002
- Chamorro, G. I. (2011). Guía de hidrometría: estimación del caudal por el método de flotadores. SENAMHI/DR-Lima N° 01-2011.
- Chan, L., Li, Y., & Stenstrom, M. K. (2008). Protocol Evaluation of the Total Suspended Solids and Suspended Sediment Concentration Methods: Solid Recovery Efficiency and Application for Stormwater Analysis. Water Environment Research, 80(9), 796–805. https://doi.org/10.2175/106143008x296497
- Chaves, E. (2025). Aplicación del Índice Simplificado de Calidad de Agua (ISQA) en la evaluación de calidad del agua en el río Ocloro , San José , Costa Rica. Tecnología En Marcha, 38(1), 59–67. https://doi.org/10.18845/tm.v38i1.7027
- Custodio, M., & Chavez, E. (2019). Quality of the aquatic environment of high Andean rivers evaluated through environmental. Ingeniare, Revista Chilena de Ingenieria, 27(3), 396–409.
- Dallas, H. (2009). The effect of water temperature on aquatic organisms: a review of knowledge and methods for assessing biotic responses to temperature (WRC Report No. KV 213/09).
- EPA, (Environmental Protection Agency). (2013). Total nitrogen. bit.ly/3Yi6XAq
- EPA, (Environmental Protection Agency). (2015). Total Phosphorus. https://bit.ly/4lahJCC
- Escobar, J. (2002). La contaminación de los ríos y sus efectos en las áreas costeras y el mar. CEPAL, Serie recursos naturales e infraestructura (Vol. 50).
- González-Dávila, R. P., Ventura-Houle, R., De-la-Garza-Requena, F. R., & Heyer-Rodríguez, L. (2019). Caracterización fisicoquímica del agua de la laguna La Vega Escondida, Tampico, Tamaulipas-México. Tecnología y Ciencias del Agua, 10(1), 01–29. https://doi.org/10.24850/j-tyca-2019-01-01
- González, M., De la Lastra, I., & Rodríguez, I. (2007). La urbanización y su efecto en los ríos. Estrategia Nacional de Restauración de Ríos. Ministerio de Medio Ambiente, Universidad Politécnica de Madrid. https://www.miteco.gob.es/es/agua/publicaciones/Urbanizacion_efectos_en_rios_Julio_2007_1_tcm30-214550.pdf
- LaDuke, O. (2022). Chemical Oxygen Demand and its applications. Advanced Journal of Environmental Science and Technology, 13(3), 1.
- Larrea, J., Rojas, M., & Romeu, B. (2013). Bacterias indicadoras de contaminación fecal en la evaluación de la calidad de las aguas. Revista Cenic, Ciencias Biológicas, 44(3), 24–34.
- Loucif, K., Neffar, S., Menasria, T., Maazi, M. C., Houhamdi, M., & Chenchouni, H. (2020). Physico-chemical and bacteriological quality assessment of surface water at Lake Tonga in Algeria. Environmental Nanotechnology, Monitoring and Management, 13(January), 100284. https://doi.org/10.1016/j.enmm.2020.100284
- Loza-Del Carpio, A., Gamarra, C., & Condori, N. (2016). Caracterización morfobatimétrica y estimación de sedimentos de la bahía interior de Puno, lago Titicaca, mediante tecnología SIG. Revista de Investigaciones Altoandinas, 18(2), 237–248. https://doi.org/10.18271/ria.2016.205
- Mancilla-Villa, O. R., Gómez-Villaseñor, L., Olguín-Lopez, J. L., Guevara-Gutiérrez, R. D., Hernández-Vargas, O., Ortega-Escobar, H. M., Flores-Magdaleno, H., Can-Chulim, Á., Sánchez-Bernal, E. I., Cruz-Crespo, E., & Palomera-García, C. (2022). Contaminación orgánica por coliformes, Nitrógeno y Fósforo en los ecosistemas acuáticos de la cuenca Ayuquila-Armería, Jalisco, México. Revista de Ciencias Biológicas y de La Salud, 24(1), 5–14.
- Mathur, A. (2015). Conductivity: Water Quality Assesment. International Journal of Engineering Research & Technology, 3(3), 2014–2016.
- MINAM, (Ministerio de Ambiente). (2017). Decreto Supremo N° 004-2017-MINAM, Aprueban Estandares de Calidad Ambiental (ECA) para Agua y establecen disposiciones complementarias, El Peruano 10 de julio del 2017. bit.ly/4jqcQUx
- Mora-Aparicio, C., Alfaro-Chinchilla, C., Pérez-Molina, J. P., & Vega-Guzmán, I. (2022). Environmental contribution of Los Tajos wastewater treatment plant in the removal of physicochemical and microbiological pollutants. Uniciencia, 36(1), 1–17. https://doi.org/10.15359/ru.36-1.33
- Mount, J. F. (1995). California rivers and streams: The conflict between fluvial process and land use. University of California Press.
- MCPS–Municipalidad Centro Poblado Salcedo. (2022). Informe de catastro y servicios de la Municipalidad del Centro Poblado Salcedo–2022. Oficina de Catastro urbano.
- Northcote, T., & Morales, P. (1991). Desarrollo adecuado de los recursos acuáticos: capacitación, investigación y manejo. In T. Northcote, P. Morales, D. Levy, & M. Greaven (Eds.), Contaminación en la lago Titicaca, Perú: capacitación, investigación y manejo (pp. 1–11). Westwater Research Center, University of British Columbia.
- Ocola, J. J., & Laqui, W. F. (2017). Fuentes contaminantes en la cuenca del lago Titicaca: Un aporte al conocimiento de las causas que amenazan la calidad del agua del maravilloso lago Titicaca. Autoridad Nacional del Agua-ANA.
- Ortiz, C., Jofre, M., & González, P. (2024). Diagnóstico integral de un río urbano. Aplicación de métricas biológicas, fisicoquímicas y del bosque de ribera. Ecosistemas, 33(1), 2613. https://doi.org/10.7818/ecos.2613
- Petculescu, I., Hynds, P., Brown, R. S., McDermott, K., & Majury, A. (2022). An assessment of total coliforms and associated thresholds as water quality indicators using a large Ontario private drinking water well dataset. Science of the Total Environment, 846(July), 157478. https://doi.org/10.1016/j.scitotenv.2022.157478
- PU, (Purdue University). (2025). Simple Water Quality Index Calculator. https://www.agry.purdue.edu/hydrology/projects/nexus-swm/en/Tools/WaterQualityCalculator.php
- Ramírez, G., & Viña, V. (1998). Limnología Colombiana. Universidad Jorge Tadeo Lozano- Exploration Company Limited (Colombia).
- Razali, A., Syed Ismail, S. N., Awang, S., Praveena, S. M., & Zainal Abidin, E. (2020). The impact of seasonal change on river water quality and dissolved metals in mountainous agricultural areas and risk to human health. Environmental Forensics, 21(2), 195–211. https://doi.org/10.1080/15275922.2020.1728434
- Revenga, C., Brunner, J., Henninger, N., Kassem, K., & Payne, R. (2000). Pilot Analysis of Globle Ecosystems: Freshwater Systems. World Resources Institute.
- Ríos-Touma, B., Villamarín, C., Jijón, G., Checa, J., Granda-Albuja, G., Bonifaz, E., & Guerrero-Latorre, L. (2022). Aquatic biodiversity loss in Andean urban streams. Urban Ecosystems, 25(6), 1619–1629. https://doi.org/10.1007/s11252-022-01248-1
- Rodriguez, D. J., Serrano, H. A., Delgado, A., Nolasco, D., & Saltiel, G. (2020). From waste to resource: Shifting paradigms for smarter wastewater. International Bank for Reconstruction and Development/The World Bank. https://doi.org/10.1596/33436
- Saad, A. M., Asari, F. ., Afandi, S., & Zid, A. (2022). River Pollution: a mini review of causes and effects. Journal of Tourism, Hospitality and Environment Management, 7(29), 139–151. https://doi.org/10/35631/JTHEM.729011
- Sáenz-Arias, S., Garcés-Ordóñez, O., Córdoba-Meza, T. L., Blandon, L., Espinosa Díaz, L. F., Vivas-Aguas, L. J., & Canals, M. (2023). Pollution by wastewater discharges: A review on microorganism-microplastic interactions and their possible environmental risks in Colombian coastal waters. Ecosistemas, 32(1), 1–14. https://doi.org/10.7818/ECOS.2489
- Sigler, A., & Bauder, J. (2012). Coliforme total y la bacteria E. coli. Northern Plains & Mountains, Regional Water Program.
- Sosnovsky, A., Rechencq, M., Fernández, M. V., Suarez, M. J., & Cantet, R. J. C. (2020). Hydrological and physico-chemical dynamics in two andean streams. Limnetica, 39(1), 17–33. https://doi.org/10.23818/limn.39.02
- Stevens, M., Ashbolt, N., & Cunliffe, D. (2003). Review of coliforms as microbial indicators of drinking water quality. Australian Government, National Health and Medical Research Council.
- Tibebe, D., Kassa, Y., Melaku, A., & Lakew, S. (2019). Investigation of spatio-temporal variations of selected water quality parameters and trophic status of Lake Tana for sustainable management, Ethiopia. Microchemical Journal, 148(April), 374–384. https://doi.org/10.1016/j.microc.2019.04.085
- Villamarín, C., Prat, N., & Rieradevall, M. (2014). Caracterización física, química e hidromorfológica de los ríos altoandinos tropicales de Ecuador y Perú. Latin American Journal of Aquatic Research, 42(5), 1072–1086. https://doi.org/10.3856/vol42-issue5-fulltext-12
- Von Sperling, M. (2007). BIOLOGICAL Wastewater Treatment Series: Wastewater characteristics, treatment and disposal, volume one. IWA Publishing. https://doi.org/10.5860/choice.45-2633
- Waite, I. R., Sobieszczyk, S., Carpenter, K. D., Arnsberg, A. J., Johnson, H. M., Hughes, C. a, Sarantou, M. J., & Rinella, F. a. (2008). Effects of urbanization on stream ecosystems in the Willamette river basin and surrounding Areas, Oregon and Washington. U.S. Geological Survey–USGS, Scientific Investigations Report 2006-5101-D.
- Wetzel, R. G. (2001). Limnology. Lake and river ecosystems (3rd ed.). Academic Press.
- WHO, (World Health Organization). (2023). Burden of disease attributable to unsafe drinking water, sanitation and hygiene, 2019 update. WHO.
- Yang, C. (2022). Review on the Causes of Eutrophication in Water. In G. Ali (Ed.), Advances in Social Science, Education and Humanities Research (pp. 246–252). Atlantis Press SARL. https://doi.org/10.2991/978-2-494069-31-2_30