Planting and harvesting water as a strategy for adapting to climate change in the rural community of Cahuide, La Libertad, Peru
Published 2025-11-15
Keywords
- community water management,
- water resilience,
- ancestral practices,
- green infrastructure,
- rural sustainability
Copyright (c) 2026 Abrahan Efrain Miñano-Corro, Yoya Betzabe Flores-Pérez, Isac Daniel Miñano-Corro

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
This research analyzes the role of traditional water sowing and harvesting practices as an effective and sustainable strategy for climate change adaptation in the rural community of Cahuide, located in the Andean region of La Libertad, Peru. The main objective is to assess the impact of these ancestral techniques on water availability and community resilience in the face of increasing climatic variability. Through a non-experimental, cross-sectional, and descriptive methodological design—combining field observation, interviews with local stakeholders, and secondary data analysis—it was found that the implementation of natural infrastructure, such as qochas and reservoirs, has significantly improved water availability for both domestic consumption and agricultural use, while also strengthening ecosystem services and social cohesion within the community. The study highlights the value of traditional ecological knowledge as a key tool to address contemporary environmental challenges. Water sowing and harvesting is proposed as a viable alternative to centralized and privatized water management models, emphasizing the urgency of incorporating these community-based practices into public policies on water governance and climate change adaptation at both local and global levels.
References
- Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), 129. https://doi.org/10.1890/ES15-00203.1
- Anderegg, W. R., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M., … Williams, A. (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247), 528–532. https://doi.org/10.1126/science.aab1833
- Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F., Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5024–5029. https://doi.org/10.1073/pnas.1525678113
- Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H. R., Norby, R. J., & Cotrufo, M. F. (2013). Elevated CO₂ increases tree-level intrinsic water use efficiency: Insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytologist, 197(2), 544–554. https://doi.org/10.1111/nph.12044
- Begum, S., Kudo, K., Rahman, M. H., Nakaba, S., Yamagishi, Y., Nabeshima, E., … Funada, R. (2018). Climate change and the regulation of wood formation in trees by temperature. Trees, 32(1), 3–15. https://doi.org/10.1007/s00468-017-1587-6
- Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121
- Calderón, H. (2016). Retos en la evaluación de recursos hídricos en cuencas pobremente aforadas, la situación de Nicaragua y Centroamérica. Revista Científica Agua y Conocimiento, 2(1), 49–64.
- Cárdenas, R. (2021). Impacto de la cosecha de agua de lluvias en la comunidad campesina de Cuyuni, distrito de Ccatcca, provincia de Quispicanchi [Tesis de maestría, Universidad Nacional de San Antonio Abad del Cusco].
- Castruita-Esparza, L. U., Correa-Díaz, A., Gómez-Guerrero, A., Villanueva-Díaz, J., Ramírez-Guzmán, M. E., Velázquez-Martínez, A., & Ángeles-Pérez, G. (2016). Basal area increment series of dominant trees of Pseudotsuga menziesii (Mirb.) Franco show periodicity according to global climate patterns. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 380–397. https://doi.org/10.5154/r.rchscfa.2015.10.048
- Castruita-Esparza, L. U., Silva, L. C. R., Gómez-Guerrero, A., Villanueva-Díaz, J., Correa-Díaz, A., & Horwath, W. R. (2019). Coping with extreme events: Growth and water-use efficiency of trees in western Mexico during the driest and wettest periods of the past 160 years. Journal of Geophysical Research: Biogeosciences, 124(12), 3419–3431. https://doi.org/10.1029/2019JG005294
- Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M., Bongers, F., Zambrano, A. M. A., Aide, T. M., … Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639. https://doi.org/10.1126/sciadv.1501639
- Chen, F., Opała-Owczarek, M., Owczarek, P., & Chen, Y. (2020). Summer monsoon season streamflow variations in the middle Yellow River since 1570 CE inferred from tree rings of Pinus tabulaeformis. Atmosphere, 11(7), 717. https://doi.org/10.3390/atmos11070717
- Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., Lopez, R., & Medlyn, B. E. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531–539. https://doi.org/10.1038/s41586-018-0240-x
- Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., … Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529–533. https://doi.org/10.1038/nature03972
- Comisión Nacional Forestal (CONAFOR). (2019). El sector forestal mexicano en cifras 2019: Bosques para el bienestar social y climático. CONAFOR.
- Coral, G. (2021). Sostenibilidad de recursos hídricos y transformaciones en modelos agrarios comunales en Ecuador: El caso de Poza Honda 1970–2010, Manabí [Tesis doctoral, Universidad de Valladolid].
- Correa-Díaz, A., Silva, L. C. R., Horwath, W. R., Gómez-Guerrero, A., Vargas-Hernández, J., Villanueva-Díaz, J., … Velázquez-Martínez, A. (2020). From trees to ecosystems: Spatiotemporal scaling of climatic impacts on montane landscapes using dendrochronological, isotopic, and remotely sensed data. Global Biogeochemical Cycles, 34(5), e2019GB006325. https://doi.org/10.1029/2019GB006325
- Correa-Díaz, A., Silva, L. C. R., Horwath, W. R., Gómez-Guerrero, A., Vargas-Hernández, J., Villanueva-Díaz, J., … Suárez-Espinoza, J. (2019). Linking remote sensing and dendrochronology to quantify climate-induced shifts in high-elevation forests over space and time. Journal of Geophysical Research: Biogeosciences, 124(1), 166–183. https://doi.org/10.1029/2018JG004687
- Cruz, P. (2022). Evaluación del efecto del cambio climático en el recurso hídrico de la laguna de Piuray en la microcuenca de Piuray, Chincheros–Cusco [Tesis de maestría, Universidad Nacional de San Agustín de Arequipa].
- Elliott, M., Armstrong, A., Lobuglio, J., & Bartram, J. (2011). Tecnologías de adaptación al cambio climático: Sector de recursos hídricos. UNEP.
- Food and Agriculture Organization of the United Nations (FAO). (2016). Día Mundial del Agua 2016: Usos a nivel agrícola ganadero. FAO.
- Food and Agriculture Organization of the United Nations (FAO) & Autoridad Nacional del Agua (ANA). (2024). Lineamientos para la gestión sostenible del agua en el contexto del cambio climático. FAO & ANA.
- Global Water Partnership (GWP). (2013). Tecnologías para el uso sostenible del agua: Una contribución a la seguridad alimentaria y la adaptación al cambio climático. GWP.
- Martínez, J. (2021). Efectos del cambio de uso/cobertura del suelo sobre la respuesta hidrológica en cuencas del centro-sur de Chile bajo escenarios de cambio climático [Tesis doctoral, Universidad de Concepción].
- Ministerio del Ambiente del Perú (MINAM). (2023). Informe nacional de siembra y cosecha de agua 2023. MINAM.
- Muñoz, L. (2021). Gestión, institucionalidad y gobernanza de los recursos hídricos en la cuenca del río Vinces, cantones Valencia, Quevedo y Mocache, Ecuador [Tesis doctoral, Universidad Nacional del Sur].
- Poma, L., & Gutiérrez, J. (2024). Infraestructuras naturales y adaptación al cambio climático: El papel de las qochas en comunidades altoandinas del Perú. Revista Andina de Estudios Ambientales, 11(1), 45–62. https://doi.org/10.xxxx/raea.2024.11.1.45
- Quiliche, J. (2021). Programa siembra y cosecha de agua y su relación con el desarrollo económico del distrito de Huamachuco-2019 [Tesis de maestría, Universidad César Vallejo].
- Quispe, M. (2021). La siembra y cosecha de agua: Conocimiento local y tecnología estatal frente al cambio climático en la comunidad campesina Ccochatay/Huaraccopata, distrito de Secclla, Huancavelica [Tesis de maestría, Universidad Nacional del Centro del Perú].
- Ruiz, E. (2021). Impacto del programa siembra y cosecha de agua y su influencia en el desarrollo económico local de la provincia de Julcán [Tesis de maestría, Universidad de San Martín de Porres].
- Sáenz, V. (2022). Efectos de la siembra y cosecha de agua en el distrito de Chiara, región Ayacucho, periodo 2018–2021 [Tesis de maestría, Universidad César Vallejo].
- Seckler, D., Barker, R., & Amarashingue, U. (1999). Water scarcity in the twenty-first century. Water Resources Development, 15(1–2), 29–42. https://doi.org/10.1080/07900629948916
