Vol. 21 No. 1 (2019)
Original articles

Pasting and textural properties of mixtures of quinoa (Chenopodium quinoa), kiwicha (Amaranthus caudatus), and tarwi (Lupinus mutabilis) flours in an aqueous system

Julio Vidaurre-Ruiz
Universidad Nacional Agraria La Molina Lima, Programa Doctoral en Ciencia de Alimentos
Walter Salas-Valerio
Universidad Nacional Agraria La Molina Lima, Facultad de Industrias Alimentarias
Ritva Repo-Carrasco-Valencia
Universidad Nacional Agraria La Molina Lima, Facultad de Industrias Alimentarias

Published 2019-01-30

Keywords

  • Mixtures of andean grains,
  • quinoa,
  • kiwicha,
  • tarwi,
  • mixture design

How to Cite

Vidaurre-Ruiz, J., Salas-Valerio, W., & Repo-Carrasco-Valencia, R. (2019). Pasting and textural properties of mixtures of quinoa (Chenopodium quinoa), kiwicha (Amaranthus caudatus), and tarwi (Lupinus mutabilis) flours in an aqueous system. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(1), 5-14. https://doi.org/10.18271/ria.2019.441

Abstract

The aim of this research was to evaluate the interaction effects of quinoa, kiwicha and tarwi flours in pasting properties (peak viscosity, VP; trough viscosity, VM; setback viscosity, VR; final viscosity, VF) and textural properties (firmness, consistency, cohesiveness, viscosity index) of the gels formed in an aqueous system using the experimental approach of mixture design. Ten treatments were formulated, which were composed of 3 individual ingredients, 3 binary mixtures, and 4 ternary mixtures. The results of this research show that the high-water absorption capacity and absence of starch from the tarwi flour significantly affected the viscosity parameters of the pastes, as well as the textural properties of the gels. kiwicha flour had a higher viscosity profile (VP: 1188.5 cP, VM: 932.5 cP, VF: 1194.0 cP, VR: 261.5 cP), than quinoa flour (VP: 147.5 cP, VM: 137.5 cP, VF: 336.5 cP; VR: 189.0 cP), however; non-additive and non-linear effects were observed in pasting and textural properties when these flours were mixed in equal proportions. Pasting properties of mixtures were highly correlated with the textural properties of the gels (r = 0.73-0.92, p<0.05). Due to the special rheological and textural characteristics that the mixtures between quinoa with tarwi or kiwicha with tarwi could have, they would be promising for the development of gluten-free bread products

References

  1. AACC. (2010). AACCI Method 76-21.01. General Pasting Method for Wheat or Rye Flour or Starch Using the Rapid Visco Analyser (11th ed.). S. Paul, Minnesota: AACCI.
  2. Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21(2), 106–113. <https://doi.org/10.1016/j.tifs.2009.10.014>
  3. Alvarez-Jubete, L., Auty, M., Arendt, E. K., & Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230(3), 437–445. https://doi.org/10.1007/s00217-009-1184-z
  4. Angioloni, A., & Collar, C. (2009). Small and large deformation viscoelastic behaviour of selected fibre blends with gelling properties. Food Hydrocolloids, 23(3), 742–748. https://doi.org/10.1016/j.foodhyd.2008.04.005
  5. AOAC. (2000). Official methods of analysis (17th ed). Gaithersburg, MD: Association of Official Analytical Chemists.
  6. Cornell, J. A. (2011). A Primer on Experiments with Mixtures. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470907443
  7. Horstmann, S. W., Foschia, M., & Arendt, E. K. (2017). Correlation analysis of protein quality characteristics with gluten-free bread properties. Food & Function, 8(7), 2465–2474. https://doi.org/10.1039/C7FO00415J
  8. Inglett, G. E., Xu, J., Stevenson, D. G., & Chen, D. (2009). Rheological and Pasting Properties of Buckwheat (Fagopyrum esculentum Möench) Flours With and Without Jet-Cooking. Cereal Chemistry Journal, 86(1), 1–6. https://doi.org/10.1094/CCHEM-86-1-0001
  9. Jacobsen, S.-E., & Mujica, A. (2006). El tarwi (Lupinus mutabilis Sweet.) y sus parientes silvestres. Botanica Economica de Los Andes Centrales- Universidad Mayor de San Andrés, 458–482.
  10. Julianti, E., Rusmarilin, H., & Yusraini, E. (2017). Functional and rheological properties of composite flour from sweet potato, maize, soybean and xanthan gum. Journal of the Saudi Society of Agricultural Sciences, 16(2), 171–177. https://doi.org/10.1016/j.jssas.2015.05.005
  11. Li, G., Wang, S., & Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137, 328–338. https://doi.org/10.1016/j.carbpol.2015.10.064
  12. Obanni, M., & Bemiller, J. N. (1997). Properties of Some Starch Blends. Cereal Chemistry, 74(4), 431–436. https://doi.org/10.1094/CCHEM.1997.74.4.431
  13. Repo-Carrasco, R., Hellström, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128–133. https://doi.org/10.1016/j.foodchem.2009.09.087
  14. Rosell, C. M., Cortez, G., & Repo-Carrasco, R. (2009). Breadmaking use of andean crops quinoa, Kañiwa, Kiwicha, and Tarwi. Cereal Chemistry, 86(4), 386–392. https://doi.org/10.1094/CCHEM-86-4-0386
  15. Sahagún, M., & Gómez, M. (2018). Assessing Influence of Protein Source on Characteristics of Gluten-Free Breads Optimising their Hydration Level. Food and Bioprocess Technology, 11(9), 1686–1694. https://doi.org/10.1007/s11947-018-2135-0
  16. Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1982). Functional Properties of Lupin Seed (Lupinus mutabilis) Proteins and Protein Concentrates. Journal of Food Science, 47(2), 491–497. https://doi.org/10.1111/j.1365-2621.1982.tb10110.x
  17. Schoenlechner, R., Mandala, I., Kiskini, A., Kostaropoulos, A., & Berghofer, E. (2010). Effect of water, albumen and fat on the quality of gluten-free bread containing amaranth. International Journal of Food Science and Technology, 45(4), 661–669. https://doi.org/10.1111/j.1365-2621.2009.02154.x
  18. Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2010). Influence of Gluten-free Flours and their Mixtures on Batter Properties and Bread Quality. Food and Bioprocess Technology, 3(4), 577–585. https://doi.org/10.1007/s11947-008-0098-2
  19. Singh, N., Kaur, S., Kaur, A., Isono, N., Ichihashi, Y., Noda, T., & Rana, J. C. (2014). Structural, thermal, and rheological properties of Amaranthus hypochondriacus and Amaranthus caudatus starches. Starch/Staerke, 66(5–6), 457–467. https://doi.org/10.1002/star.201300157
  20. Turkut, G. M., Cakmak, H., Kumcuoglu, S., & Tavman, S. (2016). Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science, 69, 174–181. https://doi.org/10.1016/j.jcs.2016.03.005
  21. Vidaurre-Ruiz, J. M., Días-Rojas, G., Mendoza-Llamo, E., & Solano-Cornejo, M. (2017). Variación del contenido de betalaínas, compuestos fenólicos y capacidad antioxidante durante el procesamiento de la quinua (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(3), 319–330.
  22. Wrigley, C. (2003). The Lupin - The grain with no starch. Cereal Foods World, 48(1), 30–31.
  23. Yilmaz, M. T., Yildiz, Ö., Yurt, B., Toker, O. S., Karaman, S., & Baştürk, A. (2015). A mixture design study to determine interaction effects of wheat, buckwheat, and rice flours in an aqueous model system. LWT - Food Science and Technology, 61(2), 583–589. https://doi.org/10.1016/j.lwt.2014.11.045
  24. Ziobro, R., Witczak, T., Juszczak, L., & Korus, J. (2013). Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocolloids, 32(2), 213–220. https://doi.org/10.1016/j.foodhyd.2013.01.006