Semi-distributed hydrological modeling in the Titicaca hydrographic region: case study of the Ramis river basin, Peru
Published 2016-12-20
Keywords
- RS-MINERVE,
- river Ramis,
- sacramento model,
- semi-distributed modeling
How to Cite
Abstract
The present research was held in the basin of the river Ramis, located in the hydrographic region of Titicaca, Peru, with the objective of calibrating and validating the Sacramento hydrological model (SAC-SMA) from a semi-distributed approach. The hydrometeorological information used for rainfall, temperature and flow, correspond to a series of records 2005 - 2016. The methodology of spatial interpolation of meteorological data in the virtual station was estimated using the Shepard procedure and potential evapotranspiration by the model Turc, these methodologies are incorporated in the RSMINERVE platform and are automated estimates. The calibration and validation phase of the model was performed randomly with 70% and 30% of the total data respectively. The statistical evaluation of efficiency and error were measured by the Nash coefficient, Nash coefficient for logarithm values and root mean square error. The results are satisfactory and it is stated that the outputs of the hydrological model adequately represent the flows of avenue and drought, constituting as an alternative for the strengthening of the hydrological forecast at the daily time step of the river Ramis.
References
- AghaKouchak, A., y Habib, E. (2010). Application of a Conceptual Hydrologic Model in Teaching Hydrologic Processes. International Journal of Engineering Education, 26(4), 963-973.
- Anderson, R. M., Koren, V. I. y Reed, S. M. (2006). Using SSURGO data to improve Sacramento Model a priori parameter estimates. Journal of Hydrology, 320, 103–116.
- Astorayme, M. A., Garcia, J., Suares, W., Felipe, O., Huggel, C., y Molina, W. (2015) Modelización Hidrológica con un enfoque semidistribuido en la cuenca del rio Chillón, Perú. Revista Peruana Geo-Atmosferica, 4, 109-124.
- Ajami, N., Gupta, H., Wagener, T., y Sorooshian, S. (2004). Calibration of a semidistributed hydrologic model for streamflow estimation along a river system. Journal Using SSURGO data to improve Sacramento Model a priori parameter estimates. Journal of Hydrology, 320, 103-116.
- Burnash, R. J., Ferral, R., y McGuire, R. A. (1973). A generalized streamflow simulation system – Conceptual modelling for digital computers. US Department of Commerce, National Weather Service and State of California, Department of Water Resources, p 204.
- Burnash, R. J. (1995). The NWS River Forecast System - catchment modeling. In: Singh, V. P. (Ed.). Computer Models of Watershed Hydrology, 311-366.
- Duan, Q., Sorooshian, S. y Gupta, V. (1992). Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resources Management, 28(4), 1015-1031.
- Feyen, L., Vázquez, R., Christiaens, K., Sels, O., y Feyen, J. (2000). Application of a distributed physically-based hydrological model to a medium size catchment. Hydrology and Earth System Sciences, 4(1), 47-63.
- Gan, T, Y., y Burges, S. J. (2006). Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability. Journal of Hydrology, 320, 117–131.
- García, J., Paredes, J., Foehn, A., y Roquier, B. (2015). RS MINERVE–Technical manual v1.14. RS MINERVE Group, Switzerland.
- García, J., Schleiss, A., y Boillat, J. (2011). Decision Support System for the hydropower plants management: the MINERVE project.
- Gordon, W., y Wixom, J. (1978). Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation. Math. of Computation, 32(141),253–264.
- Jordan, F., García, J, Boillat, J. L., Bieri, M., De Cesare, G., y Schleiss, A. (2012). Prévision des crues sur le Yangtsé –Application du concept MINERVE. Wasser Energie Luft, 104,282-288.
- Krause, P., Boyle, D. P. y Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89-97.
- Liu, Y. (2009). Automatic calibration of a rainfall–runoff model using a fast and elitist multi-objective particle swarm algorithm. Expert Systems with Applications, 36, 9533–9538.
- Liu, Y., Khu, S. T., y Savic, D. A. (2004). A fast hybrid optimisation method of multi-objective genetic algorithm and k-nearest neighbour classifier for hydrological model calibration. Lecture Notes in Computer Science, 3177, 546–551.
- Madsen, H. (2000). Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, (235), 276-288.
- Masmoudi, M. y Habaieb, H. (1993). The performance of some real-time statistical flood forecasting models seen through multicriteria analysis. Water Resources Management, 7(1), 57-67.
- McCuen, R.H., Knight, Z. y Cutter, A.G. (2006). Evaluation of the Nash Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11, 597-602.
- Moriasi, D.N., Arnold, J.G., Van Liew, M. W., Bingner, R.L., Harmel, R.D., y Veith, T.L. (2007). Model evalutation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885-900.
- Nash, J. E., y Sutcliffe J. V. (1970), River flow forecasting through conceptual models, I, A discussion of principles, Journal of Hydrologiy, 10(3), 282-290.
- Nóbrega, M. T., Collischonn, W., Tucci, C.E.M., y Paz, A.R. (2011). Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15, 585–595.
- Refsgaard, J., y Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, (32), 2189 – 2202.
- Ritter, A. y Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments, Journal of Hydrology, 480, 33-45.
- Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proc. ACM National Conference, 517–524.
- Schaefli, B., Hingray, B., Niggli, M., y Musy, A. (2005). A conceptual glacio-hydrological model for high mountainous catchments. Hydrology and Earth System Sciences Discussions, 2, 73-117.
- Sorooshian, S., Duan, Q., y Gupta, V.K., (1993). Calibration of rainfall runoff models: application of global optimization to the Sacramento Soil Moisture Accounting model. Water Resour. Res. 29, 1185–1194.
- Turc, L. (1955). Le bilan de l'eau des sols. Relations entre les precipitations, l'evaporation et l'ecoulement. Ann. Agro., (6), 5-152.
- Yapo P.O., Gupta H.V., y Sorooshian S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 181, 23-48