Isolation of bacteria with bioremediation potential and analysis of bacterial communities in an area affected by an oil spill in Condorcanqui (Amazonas, Peru)
Published 2020-09-04
Keywords
- water,
- bacteria,
- hydrocarbons,
- metagenomics,
- soil
Copyright (c) 2020 Rosita T. Castillo Rogel, Francis J. More Calero, Melitza Cornejo La Torre, Jaime N. Fernández Ponce, Eric L. Mialhe Matonnier
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
The use of oil and its derivatives has been intensified by the current high energy demand, but brought with it the increase in environmental accidents such as fuel spills that negatively affect ecosystems. In those environments there are microorganisms capable of surviving such conditions and using petroleum hydrocarbons as a source of carbon and energy; those can be used in bioremediation, with an eco-friendly and cost-effective approach. In this work, bacterial strains with bioremediation potential were isolated and identified in culture media supplemented with oil from an area contaminated from an oil spill in the Peruvian Amazon; also was done out the characterization of the bacterial community by independent analysis of culture by means of next generation sequencing directed to the 16S rRNA gene. The isolated bacterial strains were identified as Acinetobacter rudis, Enterobacter cloacae, Klebsiella oxytoca, Morganella morganii, Proteus hauseri, Proteus terrae, Proteus vulgaris (2), Pseudomonas koreensis, Pseudomonas moraviensis, Pseudomonas prosekii y Serratia marcescens (2). The culture-independent analysis detected the Proteobacteria and Bacteroidetes phylum as predominant in water and soil contaminated with hydrocarbons; Likewise, the taxonomic allocation at the family level highlighted the groups Flavobacteriaceae, Moraxellaceae, Verrucomicrobia and Acetobacteraceae as the most abundant, in addition to the genera Acinetobacter, Flavobacterium and Geobacter present in both samples. In this way, the main groups involved in the degradation of petroleum hydrocarbons were determined using culture-dependent and independent techniques.
References
- Abbasian, F., Lockington, R., Megharaj, M., Naidu, R. (2016). The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil. Current Microbiology, 72(6), 663-670. https://doi.org/10.1007/s00284-016-1001-4
- Aguilera, F., Méndez, J., Pásaroa, E., & Laffona, B. (2010). Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology, 30(4), 291-301. https://doi.org/10.1002/jat.1521
- Al-Dhabaan, F. A. (2019). Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences, 26(6), 1247-1252. https://doi.org/10.1016/j.sjbs.2018.05.029
- Al-Majed, A. A., Adebayo, A. R., & Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113, 213-227. https://doi.org/10.1016/j.jenvman.2012.07.034
- Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environmental Management, 60(4), 758-783. https://doi.org/10.1007/s00267-017-0896-2
- Allamin, I., Ijah, U., Ismail, H., & Riskuwa, M. (2014). Occurrence of hydrocarbon degrading bacteria in soil in Kukawa, Borno State. International Journal of Environment, 3(2), 36-47. https://doi.org/10.3126/ije.v3i2.10503
- Bao, Y. J., Xu, Z., Li, Y., Yao, Z., Sun, J., & Song, H. (2017). High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. Journal of Environmental Sciences (China), 56, 25-35. https://doi.org/10.1016/j.jes.2016.08.022
- Baruah, R., Mishra, S. K., Kalita, D. J., Silla, Y., Chauhan, P. S., Singh, A. K., & Deka Boruah, H. P. (2017). Assessment of bacterial diversity associated with crude oil-contaminated soil samples from Assam. International Journal of Environmental Science and Technology, 14(10), 2155-2172. https://doi.org/10.1007/s13762-017-1294-2
- Behesht, M., Roostaazad, R., Farhadpour, F., & Pishvaei, M. R. (2008). Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects. Chemical Engineering and Technology, 31(7), 953-963. https://doi.org/10.1002/ceat.200800094
- Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Krishan, D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7-21. https://doi.org/10.1590/S1517-838246120131354
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
- Brennerova, M. V., Josefiova, J., Brenner, V., Pieper, D. H., & Junca, H. (2009). Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environmental Microbiology, 11(9), 2216-2227. https://doi.org/10.1111/j.1462-2920.2009.01943.x
- Chebbi, A., Hentati, D., Zaghden, H., Baccar, N., Rezgui, F., Chalbi, M., Sayadi, S., & Chamkha, M. (2017). Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. International Biodeterioration and Biodegradation, 122, 128-140. https://doi.org/10.1016/j.ibiod.2017.05.006
- Costa, A. S., Romão, L. P. C., Araújo, B. R., Lucas, S. C. O., Maciel, S. T. A., Wisniewski, A., & Alexandre, M. R. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31-39. https://doi.org/10.1016/j.biortech.2011.11.096
- Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity Daniel. Analytical Biochemistry, 61(1), 1-10. https://doi.org/Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. doi:10.1016/0006-3207(92)91201-3
- Garrido-Sanz, D., Redondo-Nieto, M., Guirado, M., Jiménez, O. P., Millán, R., Martin, M., & Rivilla, R. (2019). Metagenomic insights into the bacterial functions of a diesel-degrading consortium for the rhizoremediation of diesel-polluted soil. Genes, 10(6). https://doi.org/10.3390/genes10060456
- Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11(3), 236-243. https://doi.org/10.1016/S0958-1669(00)00090-2
- Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 1-7. https://doi.org/10.1186/s12859-015-0611-3
- Hentati, O., Lachhab, R., Ayadi, M., & Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 185(4), 2989-2998. https://doi.org/10.1007/s10661-012-2766-y
- Hidalgo, K. J., Teramoto, E. H., Soriano, A. U., Valoni, E., Baessa, M. P., Richnow, H. H., Vogt, C., Chang, H. K., & Valéria, M. O. (2020). Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. Science of the Total Environment, 708(xxxx), 135152. https://doi.org/10.1016/j.scitotenv.2019.135152
- Hreniuc, M., Coman, M., & Cioru, B. (2015). CONSIDERATIONS REGARDING THE SOIL POLLUTION WITH OIL PRODUCTS IN S Ă CEL - MARAMURE Ş.
- Khan, M. A. I., Biswas, B., Smith, E., Mahmud, S. A., Hasan, N. A., Khan, M. A. W., Naidu, R., & Megharaj, M. (2018). Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotoxicology and Environmental Safety, 156(February), 434-442. https://doi.org/10.1016/j.ecoenv.2018.03.006
- Kostka, J. E., Prakash, O., Overholt, W. A., Green, S. J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T. C., & Huettel, M. (2011). Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Applied and Environmental Microbiology, 77(22), 7962-7974. https://doi.org/10.1128/AEM.05402-11
- Lane, D. J. (1991). 16S/23S rRNA sequencing In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. 115-175.
- Lee, D. W., Lee, H., Lee, A. H., Kwon, B. O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J. J. (2018). Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environmental Pollution, 234, 503-512. https://doi.org/10.1016/j.envpol.2017.11.097
- Liu, W., Hou, J., Wang, Q., Ding, L., & Luo, Y. (2014). Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere, 117(1), 303-308. https://doi.org/10.1016/j.chemosphere.2014.07.026
- Mahjoubi, M., Jaouani, A., Guesmi, A., Ben Amor, S., Jouini, A., Cherif, H., Najjari, A., Boudabous, A., Koubaa, N., & Cherif, A. (2013). Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites In Tunisia: Isolation, identification and characterization of the biotechnological potential. New Biotechnology, 30(6), 723-733. https://doi.org/10.1016/j.nbt.2013.03.004
- Mishra, A. K., & Kumar, G. S. (2015). Weathering of Oil Spill: Modeling and Analysis. Aquatic Procedia, 4(March), 435-442. https://doi.org/10.1016/j.aqpro.2015.02.058
- Moubasher, H. A., Hegazy, A. K. ., Mohamed, N. H. ., Moustafa, Y. M. ., Kabiel, H. F. ., & Hamad, A. A. (2015). Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration and Biodegradation, 98, 113-120. https://doi.org/10.1016/j.ibiod.2014.11.019
- Nalini, S., & Parthasarathi, R. (2013). Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization. Bioresource Technology, 147, 619-622. https://doi.org/10.1016/j.biortech.2013.08.041
- Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology and Innovation, 17. https://doi.org/10.1016/j.eti.2019.100526
- Pacwa-Płociniczak, M., Płociniczak, T., Iwan, J., Zarska, M., Chorazewski, M., Dzida, M., & Piotrowska-Seget, Z. (2016). Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of Environmental Management, 168, 175-184. https://doi.org/10.1016/j.jenvman.2015.11.058
- Prabhu, Y., & Phale, P. S. (2003). Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: Novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied Microbiology and Biotechnology, 61(4), 342-351. https://doi.org/10.1007/s00253-002-1218-y
- Sammarco, P. W., Kolian, S. R., Warby, R. A. F., Bouldin, J. L., Subra, W. A., & Porter, S. A. (2016). Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Archives of Toxicology, 90(4), 829-837. https://doi.org/10.1007/s00204-015-1526-5
- Sarkar, P., Roy, A., Pal, S., Mohapatra, B., Kazy, S. K., Maiti, M. K., & Sar, P. (2017). Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresource Technology, 242, 15-27. https://doi.org/10.1016/j.biortech.2017.05.010
- Smułek, W., Sydow, M., Zabielska-Matejuk, J., & Kaczorek, E. (2020). Bacteria involved in biodegradation of creosote PAH – A case study of long-term contaminated industrial area. Ecotoxicology and Environmental Safety, 187(October 2019). https://doi.org/10.1016/j.ecoenv.2019.109843
- Subramanian, A., & Menon, S. (2015). Novel Polyaromatic Hydrocarbon (PAH) degraders from oil contaminated soil samples. International Journal of Advanced Research, 3(August), 999-1006.
- Sutton, N. B., Maphosa, F., Morillo, J. A., Al-Soud, W. A., Langenhoff, A. A. M., Grotenhuis, T., Rijnaarts, H. H. M., & Smidt, H. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2), 619-630. https://doi.org/10.1128/AEM.02747-12
- Swift, M. J., Atlas, R. M., & Bartha, R. (1982). Journal of Ecology,. The Journal of Ecology, 70(2), 686-687. doi:10.2307/2259932
- Tuo, B. H., Yan, J. B., Fan, B. A., Yang, Z. H., & Liu, J. Z. (2012). Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Bioresource Technology, 107, 55-60. https://doi.org/10.1016/j.biortech.2011.12.114
- Van Stempvoort, D., & Biggar, K. (2008). Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Regions Science and Technology, 53(1), 16-41. https://doi.org/10.1016/j.coldregions.2007.06.009
- Varjani, S. J., & Upasani, V. N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration and Biodegradation, 120, 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006
- Zhu, F., Doyle, E., Zhu, C., Zhou, D., Gu, C., & Gao, J. (2020). Metagenomic analysis exploring microbial assemblages and functional genes potentially involved in di (2-ethylhexyl) phthalate degradation in soil. Science of the Total Environment, 715, 137037. https://doi.org/10.1016/j.scitotenv.2020.137037.