Vol. 22 Núm. 3 (2020)
Artículo breve

Extracción y caracterización química del aceite esencial de eucalipto obtenido por microondas y ultrasonido

Diana Nolazco Cama
Departamento de Tecnología de alimentos y productos agropecuarios, Universidad Nacional Agraria La Molina, Lima, Perú
Elizabeth Villanueva-Quejia
Departamento de Tecnología de alimentos y productos agropecuarios, Universidad Nacional Agraria La Molina, Lima, Perú
Beatriz Hatta Sakoda
Departamento de Tecnología de alimentos y productos agropecuarios, Universidad Nacional Agraria La Molina, Lima, Perú
Lena Téllez Monzón
Departamento Académico de Química, Universidad Nacional Agraria La Molina, Lima, Perú

Publicado 2020-09-04

Palabras clave

  • aceite esencial,
  • eucaliptol,
  • 1,8 cineol,
  • microondas libre de solventes,
  • ultrasonido

Cómo citar

Nolazco Cama, D., Villanueva-Quejia, E., Hatta Sakoda, B., & Téllez Monzón, L. (2020). Extracción y caracterización química del aceite esencial de eucalipto obtenido por microondas y ultrasonido . Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(3), 274-284. https://doi.org/10.18271/ria.2020.661

Resumen

La extracción por microondas libre de solventes y la asistencia con ultrasonido, como tecnologías emergentes ofrecen ventajas en la extracción de aceites esenciales, siendo importante la investigación del efecto sobre el rendimiento y la composición del aceite esencial. Se evaluó la influencia de la humedad de las hojas y potencia de extracción sobre el rendimiento del aceite esencial de eucalipto extraído por microondas libre de solventes, y una comparación con la asistencia con ultrasonido. La extracción se realizó por microondas a 300 y 600 watts, a 70, 80 y 90% de humedad en las hojas, seleccionando la potencia que evidenció mayor rendimiento del aceite esencial. Posteriormente, se evaluó el efecto del ultrasonido a 180 watts, 40kHz por 15 minutos sobre el rendimiento y la composición química. Se identificaron los analitos obtenidos por ambos métodos de extracción, mediante cromatografía de gases acoplado a un espectrómetro de masas (CG-EM). El mayor rendimiento (0,55%) se obtuvo a 600 watts y 90% de humedad mediante microondas. La asistencia con ultrasonido incrementó a 0,80% el rendimiento y 17 analitos adicionales en el aceite esencial. Se identificó como componente mayoritario al eucalipto l o 1,8-cineol, encontrado en 42,43% y 37,15% correspondiente a la extracción con microondas libre de solventes y microondas con asistencia de ultrasonido.

Referencias

  1. Bahmani, L., Aboonajmi, M., Arabhosseini, A., & Mirsaeedghazi, H. (2018). Effects of ultrasound pre-treatment on quantity and quality of essential oil of tarragon (Artemisia dracunculus L.) leaves. Journal of Applied Research on Medicinal and Aromatic Plants, 8(June 2016), 47–52. https://doi.org/10.1016/j.jarmap.2017.10.002
  2. Bruneton, J. (1995). Pharmacognosy, Phytochemistry. Medicinal Plants. Lavoisier Publishing, Paris. 915 pp. https://www.worldcat.org/title/pharmacognosy-phytochemistry-medicinal-plants/oclc/708701168
  3. CHAH (2016). Australian plant census. Council of Heads of Australasian Herbaria, Canberra. https://biodiversity.org.au/nsl/services/apc
  4. Chun-Hui, M., Yang, L., Zu, Y. G., & Liu, T. T. (2012). Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill. Food Chemistry, 134(4), 2532–2539. https://doi.org/10.1016/j.foodchem.2012.04.080
  5. Coppen, J. 2002. Eucalyptus: The Genus Eucalyptus. 1st Edition. London. 464 pp. https://www.taylorfrancis.com/books/e/9780429218897
  6. Cravotto, G., & Carnaroglio, D. (Eds.). (2017). Microwave chemistry. Berlin, Germany: De Gruyter. https://doi.org/10.1515/9783110479935
  7. Dehghani-Samani, A., Madreseh-Ghahfarokhi, S., Dehghani-Samani, A., & Pirali-Kheirabadi, K. (2015). Acaricidal and repellent activities of essential oil of Eucalyptus globulus against Dermanyssus gallinae (Acari: Mesostigmata). Journal of HerbMed Pharmacology, 4(3), 81–84. http://herbmedpharmacol.com/Article/JHP_20150629150411
  8. Dhakad, A. K., Pandey, V. V., Beg, S., Rawat, J. M., & Singh, A. (2018). Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. Journal of the Science of Food and Agriculture, 98(3), 833–848. https://doi.org/10.1002/jsfa.8600
  9. Drinić, Z., Pljevljakušić, D., Živković, J., Bigović, D., & Šavikin, K. (2020). Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation. Food and Bioproducts Processing, 120(2006), 158–165. https://doi.org/10.1016/j.fbp.2020.01.011
  10. El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., Mousadik, A. El, Hartmann, D., Jilale, A., Renaud, F. N. R., & Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1–2), 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069
  11. Elaissi, A., Salah, K. H., Mabrouk, S., Larbi, K. M., Chemli, R., & Harzallah-Skhiri, F. (2011). Antibacterial activity and chemical composition of 20 Eucalyptus species’ essential oils. Food Chemistry, 129(4), 1427–1434. https://doi.org/10.1016/j.foodchem.2011.05.100
  12. Farhat, A., Benmoussa, H., Bachoual, R., Nasfi, Z., Elfalleh, W., Romdhane, M., & Bouajila, J. (2017). Efficiency of the optimized microwave assisted extractions on the yield, chemical composition and biological activities of Tunisian Rosmarinus officinalis L. essential oil. Food and Bioproducts Processing, 105, 224–233. https://doi.org/10.1016/j.fbp.2017.07.011
  13. Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., & Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chemistry, 150, 193–198. https://doi.org/10.1016/j.foodchem.2013.10.139
  14. Garneau, F. X., Collin, G. J., Jean, F. I., Gagnon, H., & Arze, J. B. L. (2013). Essential oils from Bolivia. XIII. Myrtaceae: Blepharocalyx salicifolius (Kunth.) O. Berg. Journal of Essential Oil Research, 25(3), 166–170. https://doi.org/10.1080/10412905.2012.744702
  15. Godinho, W. M., Farnezi, M. M., Pereira, I. M., Gregório, L. E., & Grael, C. F. F. (2014). Volatile constituents from leaves of Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae). Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 13(3), 249–253. http://www.blacpma.usach.cl/index.php?option=com_content&view=article&id=116&Itemid=126
  16. González-Guiñez, R., Silva-Aguayo, G., Urbina-Parra, A., & Gerding-González, M. (2016). Aceite esencial de Eucalyptus globulus Labill Y Eucalyptus nitens H. Deane & Maiden (MYRTACEAE) para el control de Sitophilus zeamais Motschulsky. Chilean Journal of Agricultural & Animal Sciences, ahead, 32(3), 204-216. https://doi.org/10.4067/s0719-38902016005000005
  17. Gupta, D., Shah, M., & shrivastav, P. (2013). Microwave-Assisted Extraction of Eucalyptus Citriodora Oil and Comparison with Conventional Hydro Distillation. Middle East Journal of Scientific Research, 16(5), 702–705. https://doi.org/10.5829/idosi.mejsr.2013.16.05.11890
  18. Harkat-Madouri, L., Asma, B., Madani, K., Bey-Ould Si Said, Z., Rigou, P., Grenier, D., Allalou, H., Remini, H., Adjaoud, A., & Boulekbache-Makhlouf, L. (2015). Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Industrial Crops and Products, 78, 148–153. https://doi.org/10.1016/j.indcrop.2015.10.015
  19. Hernández, J. J., Ragone, M. I., Bonazzola, P., Bandoni, A. L., & Consolini, A. E. (2018). Antitussive, antispasmodic, bronchodilating and cardiac inotropic effects of the essential oil from Blepharocalyx salicifolius leaves. Journal of Ethnopharmacology, 210, 107–117. https://doi.org/10.1016/j.jep.2017.08.013
  20. Ieri, F., Cecchi, L., Giannini, E., Clemente, C., & Romani, A. (2019). GC-MS and HS-SPME-GC×GC-TOFMS determination of the volatile composition of essential oils and hydrosols (By-products) from four Eucalyptus species cultivated in Tuscany. Molecules, 24(2), 1–15. https://doi.org/10.3390/molecules24020226
  21. Khalili, G., Mazloomifar, A., Larijani, K., Tehrani, M. S., & Azar, P. A. (2018). Solvent-free microwave extraction of essential oils from Thymus vulgaris L. and Melissa officinalis L. Industrial Crops and Products, 119(September 2017), 214–217. https://doi.org/10.1016/j.indcrop.2018.04.021
  22. Kheder, D. A., Al-Habib, O. A. M., Gilardoni, G., & Vidari, G. (2020). Components of Volatile Fractions from Eucalyptus camaldulensis Leaves from Iraqi–Kurdistan and Their Potent Spasmolytic Effects. Molecules, 25(4). https://doi.org/10.3390/molecules25040804
  23. Kowalski, R., Kowalska, G., Jamroz, J., Nawrocka, A., & Metyk, D. (2015). Effect of the ultrasound-assisted preliminary maceration on the efficiency of the essential oil distillation from selected herbal raw materials. Ultrasonics Sonochemistry, 24, 214–220. https://doi.org/10.1016/j.ultsonch.2014.12.008
  24. Kringel, D. H., Antunes, M. D., Klein, B., Crizel, R. L., Wagner, R., de Oliveira, R. P., Dias, A., & Zavareze, E. (2017). Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β-Cyclodextrin Inclusion Complex. Journal of Food Science, 82(11), 2598–2605. https://doi.org/10.1111/1750-3841.13923
  25. Kusuma, H. S., Altway, A., & Mahfud, M. (2018). Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. Journal of Industrial and Engineering Chemistry, 58, 343–348. https://doi.org/10.1016/j.jiec.2017.09.047
  26. Lucchesi, M. E., Chemat, F., & Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. Journal of Chromatography A, 1043(2), 323–327. https://doi.org/10.1016/j.chroma.2004.05.083
  27. Memarzadeh, S. M., Ghasemi Pirbalouti, A., & AdibNejad, M. (2015). Chemical composition and yield of essential oils from Bakhtiari savory (Satureja bachtiarica Bunge.) under different extraction methods. Industrial Crops and Products, 76, 809–816. https://doi.org/10.1016/j.indcrop.2015.07.068
  28. Mohammadhosseini, M., Akbarzadeh, A., & Flamini, G. (2017). Profiling of Compositions of Essential Oils and Volatiles of Salvia limbata Using Traditional and Advanced Techniques and Evaluation for Biological Activities of Their Extracts. Chemistry & Biodiversity, 14(5), e1600361. https://doi:10.1002/cbdv.201600361
  29. Moradi, S., Fazlali, A., & Hamedi, H. (2018). Microwave-assisted hydro-distillation of essential oil from rosemary: Comparison with traditional distillation. Avicenna Journal of Medical Biotechnology, 10(1), 22–28. https://pubmed.ncbi.nlm.nih.gov/29296263/
  30. Morsy, N. F. S. (2015). A short extraction time of high quality hydrodistilled cardamom (Elettaria cardamomum L. Maton) essential oil using ultrasound as a pretreatment. Industrial Crops and Products, 65, 287–292. https://doi.org/10.1016/j.indcrop.2014.12.012
  31. Mossa, A. T. H., Abdelfattah, N. A. H., & Mohafrash, S. M. M. (2017). Nanoemulsion of camphor (Eucalyptus globulus) essential oil, formulation, characterization and insecticidal activity against wheat weevil, Sitophilus granarius. Asian Journal of Crop Science, 9(3), 50–62. https://doi.org/10.3923/ajcs.2017.50.62
  32. Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., & Wink, M. (2010). Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 17(13), 1061–1066. https://doi.org/10.1016/j.phymed.2010.06.018
  33. Natividad, J. L. (2019). Diseño de una planta piloto agroindustrial para la producción de aceite esencial de eucalipto (Eucalyptus globulus), no convencional, bajo la filosofía “Zero Waste” (Tesis de pregrado). Universidad Nacional José Faustino Sánchez Carrión, Huacho, Perú.
  34. Nora, F. M. D., & Borges, C. D. (2017). Ultrasound pretreatment as an alternative to improve essential oils extraction. Ciência Rural, 47(9), 1–9. https://doi.org/10.1590/0103-8478cr20170173
  35. Petigny, L., Périno, S., Minuti, M., Visinoni, F., Wajsman, J., & Chemat, F. (2014). Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. from lab to industrial scale. International Journal of Molecular Sciences, 15(5), 7183–7198. https://doi.org/10.3390/ijms15057183
  36. Petigny, L., Périno-Issartier, S., Wajsman, J., & Chemat, F. (2013). Batch and continuous ultrasound assisted extraction of boldo leaves (Peumus boldus Mol.). International Journal of Molecular Sciences, 14(3), 5750–5764. https://doi.org/10.3390/ijms14035750
  37. Ramezani, H., Singh, H. P., Batish, D. R., & Kohli, R. K. (2002). Antifungal activity of the volatile oil of Eucalyptus citriodora. Fitoterapia, 73(3), 261–262. https://doi.org/10.1016/S0367-326X(02)00065-5
  38. Sartorelli, P.; Marquioreto, A.D.; Amaral-Baroli, A.; Lima, M.E., & Moreno, P.R.; (2007). Chemical composition and antimicrobial activity of the essential oils from two species of Eucalyptus. Phytother. Res. 21(3): 231–233. https://doi:10.1002/ptr.205
  39. Seidi Damyeh, M., Niakousari, M., & Saharkhiz, M. J. (2016). Ultrasound pretreatment impact on Prangos ferulacea Lindl. and Satureja macrosiphonia Bornm. essential oil extraction and comparing their physicochemical and biological properties. Industrial Crops and Products, 87, 105–115. https://doi.org/10.1016/j.indcrop.2016.04.025
  40. Sharafati Chaleshtori, F., Saholi, M., & Sharafati Chaleshtori, R. (2018). Chemical Composition, Antioxidant and Antibacterial Activity of Bunium persicum, Eucalyptus globulus, and Rose Water on Multidrug-Resistant Listeria Species. Journal of Evidence-Based Integrative Medicine, 23, 1–7. https://doi.org/10.1177/2515690X17751314
  41. Tran, Q.T.; Vu Thi, T.L.; Do, T.L.; Pham Thi, H.M.; Hoang Thi, B.; Chu, Q.T.; Lai Phuong, P.T.; Do, H.N.; Hoang Than, H.T.; Ta Thi, T.T.; Luu, V.H.; Mai Duong, P.T.; Thu Phung, H.T. (2020). Optimization of microwave-assisted extraction process of Callicarpa candicans (Burm. f.) Hochr essential oil and its inhibitory properties against some bacteria and cancer cell lines. Processes, 8(2). https://doi.org/10.3390/pr8020173
  42. Ullah, H., Wilfred, C. D., & Shaharun, M. S. (2019). Comparative assessment of various extraction approaches for the isolation of essential oil from polygonum minus using ionic liquids. Journal of King Saud University - Science, 31(2), 230–239. https://doi.org/10.1016/j.jksus.2017.05.014
  43. Van Wyk, B.-E., Wink, M., (2017), Medicinal Plants of the World, London, UK.
  44. Wang, Y., Li, R., Jiang, Z., Tan, J., Tang, S., Li, T., Liang, L., He, H., Liu, Y., Li, J., & Zhang, X. (2018). Green and solvent-free simultaneous ultrasonic-microwave assisted extraction of essential oil from white and black peppers. Industrial Crops and Products, 114(January), 164–172. https://doi.org/10.1016/j.indcrop.2018.02.002
  45. Wilson, P., Ospina, J. D., Salvador, M., Orozco, S., & Bonilla, R. (2016). Efecto del secado y la edad de las plantas en la composición de los aceites esenciales de Lippia alba (Mill.) N. E. Br. ex. 65, 170–175. https://doi.org/10.15446/acag.v65n2.47576
  46. Zhu, J. J., Yang, J. J., Wu, G. J., & Jiang, J. G. (2020). Comparative antioxidant, anticancer and antimicrobial activities of essential oils from Semen Platycladi by different extraction methods. Industrial Crops and Products, 146(January), 112206. https://doi.org/10.1016/j.indcrop.2020.112206
  47. Zrira, S., Bessiere, J. M., Menut, C., Elamrani, A., & Benjilali, B. (2004). Chemical composition of the essential oil of nine Eucalyptus species growing in Morocco. Flavour and Fragrance Journal, 19(2), 172–175. https://doi.org/10.1002/ffj.1289.