Vol. 21 Núm. 1 (2019)
Artículo breve

Biolixiviación indicativa del sulfato de cobre por crecimiento microbiano ante el drenaje minero

Paola del Rosario Eyzaguirre Liendo
Universidad Nacional Jorge Basadre Grohmann, Facultad de Ciencias
Daladier Miguel Castillo Cotrina
Universidad Nacional Jorge Basadre Grohmann, Facultad de Ciencias

Publicado 2019-02-26

Palabras clave

  • drenaje ácido,
  • biolixiviación,
  • cobre,
  • extracción mineral

Cómo citar

Eyzaguirre Liendo, P. del R. ., & Castillo Cotrina, D. M. . (2019). Biolixiviación indicativa del sulfato de cobre por crecimiento microbiano ante el drenaje minero. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(1), 49-56. https://doi.org/10.18271/ria.2019.444

Resumen

La búsqueda de alternativas tecnológicas sostenibles para el drenaje ácido de minas es una actual necesidad. El propósito del estudio fue determinar la biolixiviación indicativa del sulfato de cobre mediante el crecimiento microbiano en el drenaje minero. Desde el 2014 hasta el 2015 se determinó de forma experimental la producción promedio máxima microbiana en lixiviados pertenecientes a cuatro botaderos del asiento minero de Toquepala de la Empresa Southern Perú Copper. Se encontró diferencias significativas (p <0.05) de la actividad microbiana entre las concentraciones del sulfato de cobre aplicadas (0.0; 5.0; 10.0; 15.0; 20.0 g.L-1) donde los resultados fueron (logaritmo de cel/ml): 8.90±0.03; 7.77±0.06; 7.20±0.07; 7.04±0.04 y 7.00±0.02. Se concluyó que, la biolixiviación indicativa del sulfato de cobre se asoció al crecimiento microbiológico como proceso tecnológico. Sin embargo, se requiere establecer diseños de experimentos para determinar aquellas reacciones que optimicen el crecimiento microbiano y que permitan garantizar mayores contendidos de sulfato de cobre, a partir de la biolixiviación.

Referencias

  1. Adedigba, A. (2015). Assessment of Metal Recycling in Remediation Projects: Application and Evaluation of a Cost-benefit Analysis Method. (Master's Thesis). Chalmers Reproservice, Gothenburg. http://publications.lib.chalmers.se/records/fulltext/226582/226582.pdf
  2. Amari, K.E., Valera, P., Hibti, M., Pretti, S., Marcello, A. & Essarraj, S. (2014). Impact of mine tailings on surrounding soils and ground water: Case of Kettara old mine, Morocco. Journal of African Earth Sciences; 100, 437–449. http://dx.doi.org/10.1016/j.jafrearsci.2014.07.017
  3. Andersson, D. & Lundström, J. (2015). Enhanced Soil Washing – A Study on Treatment of Copper Polluted Soil and Bark. (Master's thesis 2015:45). Chalmers Reproservice, Gothenburg
  4. Beylot, A. & Villeneuve, J. (2017). Accounting for the environmental impacts of sulfidic tailings storage in the Life Cycle Assessment of copper production: A case study. Journal of Cleaner Production; 152, 139–145. http://dx.doi.org/10.1016%2Fj.jclepro.2017.03.129
  5. Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms - Bosecker – 1997. FEMS Microbiol. Rev; 20, 591–604. https://doi.org/10.1016/S0168-6445(97)00036-3
  6. Brierley, C.L. (2016). Biological processing of sulfidic ores and concentrates – integrating innovations. In: Lakshmanan, V.I., Roy, R., Ramachandran, V. (Eds.): Innovative Process Development in Metallurgical Industry. Springer International Publishing, Switzerland; 109–135.
  7. Brown, L., (2006). Plan B 2.0: rescuing a planet under stress and a civilization in trouble. Earth Policy Institute. W.W. Norton & Co., New York. ISBN: 0-393-32831-7
  8. Bryan, C., Watkin, E., McCredden, T., Wong, Z., Harrison, S. & Kaksonen, A. (2015). The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy; 152, 33–43. http://doi.org/10.1016/j.hydromet.2014.12.004
  9. Cox, A. & Bryan, C.G. (2017). Insights into Heap Bioleaching at the Agglomerate-Scale. Solid State Phenom. Trans. Tech. Publ. 185–188. https://doi.org/10.4028/www.scientific.net/SSP.262.185
  10. de Godoi, L.A.G., Foresti, E. & Damianovic, M.H.R.Z. (2017). Down-flow fixed-structured bed reactor: an innovative reactor configuration applied to acid mine drainage treatment and metal recovery. J. Environ. Manag; 197, 597–604. https://doi.org/10. 1016/j.jenvman.2017.04.027
  11. Dunbar, W.S. (2017). Biotechnology and the mine of Tomorrow. Trends Biotechnol; 35, 79–89. https://doi.org/10.1016/j.tibtech.2016.07.004
  12. Ehrlich, H.L. (2001). Past, present and future of biohydrometallurgy. Hydrometallurgy; 59, 127–134. https://doi.org/10.1016/S0304-386X(00)00165-1
  13. Ewart, D.K. & Martin, N.H. (1991). The extraction of metals from ores using bacteria. Adv. Inorg. Che; 36, 103–135. https://doi.org/10.1016/S0898-8838(08)60038-0
  14. Giaveno, A., Lavalle, L., Guibal, E. & Donati, E. (2008). Biological ferrous sulfate oxidation by A. ferrooxidansimmobilized on chitosan beads. J. Microbiol. Methods; 72, 227–234. https://doi.org/10.1016/j.mimet.2008.01.002
  15. Gupta, A., Dutta, A., Sarkar, J., Paul, D., Panigrahi, M.K. & Sar, P. (2017). Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India. Genomics Data; 12, 11–13. https://doi.org/10.1016/j.gdata.2017.02.004
  16. Hallberg, K.B. (2010). New perspectives in acid mine drainage microbiology. Hydrometallurgy; 104, 448–453. https://doi.org/10.1016/j.hydromet.2009.12.013
  17. Hao, X.D., Liang, Y.L., Yin, H.Q., Ma, L.Y., Xiao, Y.H., Liu, Y.Z., Qiu, G.Z. & Liu, X.D. (2016). The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures. Minerals Engineering; 98, 279–285. http://dx.doi.org/10.3390/min8020032
  18. Harrison, S.T.L. (2016). Biotechnologies that utilize acidophiles. In: Quatrini, R., Johnson, D.B. (Eds.), Acidophiles: Life in Extremely Acidic Environments. Caistor Academic Press, Haverhill, UK, 265–283.
  19. Hocheng, H., Chang, J.H., Hsu, H.S., Han, H.J., Chang, Y.L. & Jadhav, U.U. (2012). Metal removal by Acidithiobacillus ferrooxidans through cells and extra-cellular culture supernatant in biomachining. CIRP J Manuf Sci Technol; 5, 137–141. http://dx.doi.org/10.1016%2Fj.cirpj.2012.03.003
  20. Johnson, D.B. (2014). Biomining – biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol; 30, 24–31. https://doi.org/10.1016/j.copbio.2014.04.008
  21. Karlfeldt, F.K., Yillin, L. & Strömvall, A.M. (2013). Remediation of metal polluted hotspot areas through enhanced soil washing - evaluation of leaching methods. J. Environ. Manag; 128, 489–496. https://doi.org/10.1016/j.jenvman.2013.05.056
  22. Kefeni, K.K., Msagati, T.A.M & Mamba, B.B. (2017). Acid mine drainage: prevention treatment options, and resource recovery: a review. J. Clean. Prod; 151, 475–493. https://doi.org/10.1016/j.jclepro.2017.03.082
  23. Kondrat'eva, T.F., Pivovarova, T.A., Bulaev, A.G., Melamud, V.S., Muravyov, M.I., Usoltsev, A.V. & Vasil’ev, E.A. (2012). Percolation bioleaching of copper and zinc and gold recovery from flotation tailings of the sulfide complex ores of the Ural region, Russia. Hydrometallurgy; 111–112, 82–86. http://dx.doi.org/10.1016/j.hydromet.2011.10.007
  24. Korehi, H., Blothe, M. & Schippers, A. (2014). Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage. Research in Microbiology; 165, 713–718. https://doi.org/10.1016/j.resmic.2014.08.007
  25. Martins, C.J., Piacentini, R.R. & Sancinetti, G.P. (2017). Removal sulphate and metals Fe+2, Cu+2 and Zn+2 from acid mine drainage in an anaerobic sequential batch reactor. J. Environ. Chem. Eng. 5(2), 1985–1989. https://doi.org/10.1016/j.jece.2017.04.011
  26. Mazuelos, A., Romero, R., Palencia, I., Iglesias, N. & Carranza, F. (1999). Continuous ferrous iron biooxidation in flooded packed bed reactors. Miner. Eng; 12(5), 559–564.
  27. Mishra, D., Kim, D.J., Ahn, J.G. & Rhee, Y.H. (2005). Bioleaching: a microbial process of metal recovery; A review. Met. Mater. Int; 11, 249–256. https://doi.org/10.1007/BF03027450
  28. Nejeschlebová, L., Sracek, O., Mihaljevicˇ, M., Ettler, V., Krˇíbek, B. & et al. (2015). Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia. Journal of African Earth Sciences; 105, 17–28. https://doi.org/10.1016/j.jafrearsci.2015.02.005
  29. Panda, S., Akcil, A., Pradhan, N. & Deveci, H. (2015). Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol; 196, 694–706. https://doi.org/10.1016/j.biortech.2015.08.064
  30. Park, S.M., Yoo, J.C., Ji, S.W., Yang, J.S. & Baek, K. (2015). Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH. Environ. Sci. Pollut. Res; 22, 3013–3022. https://doi.org/10.1016/j.jece.2014.07.021
  31. Pozo, A.J.S., Puente, I., Laguela, S. & Veiga, Ma. (2017). Tratamiento microbiano de aguas ácidas resultantes de la actividad minera: una revisión. Tecnología y Ciencias del Agua; 8(3), 75–91. http://dx.doi.org/10.24850/j-tyca-2017-03-05
  32. Rawlings, D.E. (2013). Biomining: Theory, Microbes and Industrial Processes. Springer, Berlin-New York
  33. Simate, G.S. & Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng; 2, 1785–1803. https://doi.org/10.1016/j.jece.2014.07.021
  34. Sugio, T., Wakabayashi, M., Kanao, T. & Takeuchi, F. (2008). Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile. Biosci Biotechnol Biochem; 72(4), 998–1004. https://doi.org/10.1271/bbb.70743
  35. Vahidi, E. & Zhao, F. (2016). Life cycle analysis for solvent extraction of rare earth elements from aqueous solutions. In: Rewas 2016. Springer, 113–120. https://doi.org/10.1007/978-3-319-48768.7_17
  36. Volchko, Y., Norrman, J., Rosén, L. & Karlfeld, F.K. (2017). Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden. Science of the Total Environment; 605–606, 300–314. http://dx.doi.org/10.1016/j.scitotenv.2017.06.128
  37. Watling, H. (2016). Microbiological advances in biohydrometallurgy. Fortschr. Mineral; 6(2), 49. https://doi.org/10.3390/min6020049
  38. Yin, S., Wang, L., Kabwe, E., Chen, X., Yan, R. & et al. (2018). Copper Bioleaching in China: Review and Prospect. Minerals; 8(32). 1–26. http://dx.doi.org/10.3390/min8020032