Vol. 22 No. 1 (2020)
Short article

Environmental occurrence of the antibiotics and their ecotoxicological prediction through the use of the Gecotoxic ® computational program

George Argota Pérez
Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente “AMTAWI”, Puno, Peru

Published 2020-09-03

Keywords

  • water,
  • antibiotic,
  • fish,
  • ecotoxicological prediction

How to Cite

Argota Pérez, G. (2020). Environmental occurrence of the antibiotics and their ecotoxicological prediction through the use of the Gecotoxic ® computational program. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(1), 78-86. https://doi.org/10.18271/ria.2020.538

Abstract

The exposure of antibiotics in water is an environmental concern where comprehensive methodologies are needed to signal early the probability of risk. The objective of the study was to describe the environmental occurrence of antibiotics and its predictive ecotoxicological through the Gecotoxic® computer program. By non-probabilistic sampling for convenience, a scientific review article was selected assessing, the number of antibiotics and only ciprofloxacin; oxytetracycline, sulfamethoxazole, trimethoprim and erythromycin (out of 39) were represented on the four continents assessed: Africa, America, Asia-Pacific and Europe. Other studies considered the correlational limitation between bioassays, tax source characterization data, physical-chemical parameters and / or associated environmental matrix analyses. It was concluded that the ecotoxicology of antibiotics is predictable through the Gecotoxic® computational program, as it considers the medium toxicity bioassay test that was analyzed in the selected article.

References

  1. Argota, P.G., Carbonell, M.A.C. & Rodríguez, A.M. (2019). Gecotoxic – Certificado de Registro de Programas Ordenador. Número de Partida Registral: 01025-2019. Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (INDECOPI). Lima, República del Perú.
  2. Bengtsson, P.J., Kristiansson, E. & Larsson, D.G.J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev; 42, 1–41. Doi: 10.1093/femsre/fux053
  3. Chen, H., Liu, S., Xu, X.R., Diao, Z.H., Sun, K.F., Hao, Q.W., Liu, S.S. & Ying, G.G. (2018). Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. Journal of Hazardous Materials; 343, 140–148. Doi: 10.1016/j.jhazmat.2017.09.017
  4. Danner, M.C., Robertson, A., Behrends, V. & Reiss, J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment; 664, 793–804. Doi: 10.1016/j.scitotenv.2019.01.406
  5. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A. & et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland); 7, 2189–2212. Doi: 10.3390/su7022189
  6. Elgallal, M., Fletcher, L. & Evans, B. (2016). Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric Water Manag; 177, 419–431. Doi:10.1016/j.agwat.2016.08.027
  7. Grenni, P., Ancona, V. & Barra, C.A. (2018). Ecological effects of antibiotics on natural ecosystems: a review. Microchem. J; 136. Doi.org/10.1016/j.microc.2017.02.006
  8. Guidi, L.R., Santos, F.A., Ribeiro, A.C.S.R., Fernandes, C., Silva, L.H.M. & Gloria, M.B.A. (2017). A simple, fast and sensitive screening LC-ESI- MS/MS method for antibiotics in fish. Talanta, 163, 85–93. Doi: 10.1016/j.talanta.2016.10.089
  9. Guo, J., Li, J., Chen, H., Bond, P.L. & Yuan, Z. (2017). Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Research; 123, 468–478. Doi: 10.1016/j.watres.2017.07.002
  10. Khadra, A., Pinelli, E., Ezzariai, A., Mohamed, O., Merlina, G., Lyamlouli, K. & et al. (2019). Assessment of the genotoxicity of antibiotics and chromium in primary sludge and compost using Vicia faba micronucleus test. Ecotoxicology and Environmental Safety; 185, 1–6. doi: 10.1016 / j.ecoenv.2019.109693
  11. Kumar, M., Ram, B., Honda, R., Poopipattana, C., Canh, VD, Chaminda, T. & Furumai, H. (2019). Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective. Science of The Total Environment; 693, 1–14. Doi: 10.1016/j.scitotenv.2019.133640
  12. Larsson, D.G.J., Andremont, A., Bengtsson, P.J., Brandt, K.K., de Roda Husman, A.M., Fagerstedt, P., Fick, J. & et al. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International; 117, 132–138. Doi: 10.1016/j.envint.2018.04.041
  13. Liu, K., Zhang, D., Xiao, X., Cui, L. & Zhang, H. (2020). Occurrence of quinotone antibiotics and their impacts on aquatic environment in typical river-estuary system of Jiaozhou Bay, China. Ecotoxicology and Environmental Safety; 190, 1–9. Doi: 10.1016/j.ecoenv.2019.109993
  14. Mondal, S., Xu, J., Chen, G., Huang, S., Huang, C., Yin, L. & Ouyang, G. (2018). Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr) NH2- polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta; 1047, 62–70. Doi: 10.1016/j.aca.2018.09.060
  15. Monteiro, S.C. & Boxall, A.B.A. (2015). Occurrence and fate of human pharmaceuticals in the environment. Rev. Environ. Contam. Toxicol. Doi: 10.1007/978-3-319-20013-2
  16. Peralta, M.I., Reiss, J. & Robertson, A.L. (2018). Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci. Total Environ; 610–611, 267–275. Doi.org/10.1016/j.scitotenv.2017.08.036
  17. Perussolo, M.C., Guiloski, I.C., Lirola, J.R., Fockink, D.H., Corso, C.R., Bozza, D.C., Prodocimo, V. & et al. (2019). Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen). Ecotoxicology and Environmental Safety; 182, 1–10. Doi: 10.1016/j.ecoenv.2019.109438
  18. Ramesh, M., Thilagavathi, T., Rathika, R. & Poopal, R.K. (2018). Antioxidant status, biochemical and hematological responses in a cultivable fish Cirrhinus mrigala exposed to an aquaculture antibiotic Sulfamethazine. Acuicultura; 491, 10–19. Doi: 10.1016/j.aquaculture.2018.02.046
  19. Rodrigues, S., Antunes, S.C., Correia, A.T., Golovko, O., Žlábek, V. & Nunes, B. (2018). Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere; 216, 234–247. Doi: 10.1016/j.chemosphere.2018.10.124
  20. Singer, A.C., Shaw, H., Rhodes, V. & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol; 7, 1–22. Doi.org/10.3389/fmicb.2016.01728
  21. Wang, H.X., Wang, N., Wang, B., Zhao, Q., Fang, H., Fu, C.W. & et al. (2016). Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children. Environ. Sci. Technol.; 50, 2692–2699. Doi:10.1021/acs.est.5b05749.