Características físico-químicas de las semillas de pajuro (Erythrina edulis Triana) y propiedades funcionales después de la extrusión
Publicado 2020-09-04
Palabras clave
- pajuro,
- extrusión,
- semillas,
- legumbre,
- subutilizado
Derechos de autor 2020 Víctor Delgado-Soriano, Paola Cortés-Avendaño, Américo Guevara-Pérez, Carlos Vílchez-Perales
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
El objetivo del presente estudio fue determinar las características físico-químicas de las semillas de pajuro (Erythrina edulis Triana) y los efectos de la temperatura y humedad sobre las propiedades funcionales de las semillas extruidas. Las semillas maduras fueron acondicionadas para su caracterización físico-química y extrusión bajo tres condiciones de temperatura (110, 120 y 130 °C) y dos niveles de humedad (13 y 18%). Los resultados de las características físico-químicas se presentaron en términos de promedios y desviaciones estándar, mientras que los datos de las propiedades funcionales se sometieron a ANOVA bajo un Diseño Completamente al Azar con arreglo factorial 3x2 y para la comparación de medias se usó la prueba Tukey (p˂0,05). Las semillas presentaron valores de color en la testa como L* (27,26), a* (8,60) y b* (4,81), dimensiones de largo (4,35 cm), ancho (2,58 cm) y espesor (1,28 cm); asimismo, se registró un valor de 478,96 g para el peso de 100 semillas, porcentajes de cáscara (10,8%) y cotiledones (89,2%) respecto a la semilla entera, y actividad de agua (0,983) a 66% de humedad. Las semillas de pajuro extruidas a 130 ºC y 13% de humedad mostraron mejores propiedades funcionales, para el índice de expansión (2,58 cm), índice de absorción de agua (7,57%) e índice de solubilidad en agua (38,85%). Las características de las semillas enteras como extruidas, colocan al pajuro como un alimento potencial para el desarrollo de nuevos productos que permitirán satisfacer las necesidades del consumidor.
Referencias
- Adebowale, Y., Adeyemi, A., & Oshodi, A. (2005). Variability in the physicochemical, nutritional and antinutritional attributes of six Mucuna species. Food Chemistry, 89(1): 37–48. http://dx.doi.org/10.1016/j.foodchem.2004.01.084
- AOAC. (2005). Official Methods of Analysis (18th ed.). Gaithersburg, MD: Association of Official Analytical Chemists.
- Aro, J., & Calcin, M. (2019). Elaboración de una mezcla alimenticia a base de quinua (Chenopodium quinoa Willd), Cañihua (Chenopodium pallidicaule Aellen), cebada (Hordeum vulgare L.), maíz (Zea mays L.), haba (Vicia faba L.) y soya (Glycine max Merr) por proceso de cocción - extrusión. Journal of High Andean Research, 21(2): 293–303. http://dx.doi.org/10.18271/ria.2019.506
- Bessada, S., Barreira, J., & Oliveira, B. (2019). Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science & Technology, 93:53–68. https://doi.org/10.1016/j.tifs.2019.08.022
- Dalbhagat, C., Kumar, D., & Mishra, H. (2019). Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends in Food Science & Technology, 85: 226 - 240. https://doi.org/10.1016/j.tifs.2019.01.001
- FAO. (2017). The future of food and agriculture – Trends and challenges. Recuperado de http://www.fao.org/3/a-i6583e.pdf
- Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science & Technology, 99: 284 - 294. https://doi.org/10.1016/j.tifs.2020.03.012
- Gulisano, A., Alves, S., Martins, J., & Trindade, L. (2019). Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop. Frontiers in Plant Science. 10:1385. https://doi.org/10.3389/fpls.2019.01385
- Hoang, N., Tóth, K., & Stacey, G. (2020). The role of microRNAs in the legume–Rhizobium nitrogen-fixing symbiosis. Journal of Experimental Botany, 71(5): 1668–1680. https://doi.org/10.1093/jxb/eraa018
- Honců, I., Sluková, M., Vaculova, K., Sedlackova, I., Wiege, B., & Fehling, E. (2016). The effects of extrusion on the content and properties of dietary fibre components in various barley cultivars. Journal of Cereal Science, 68: 132–139. https://doi.org/10.1016/j.jcs.2016.01.012
- Huang, Y., Ma, Y., Tsai, Y., & Chang, S. (2019). In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. International Journal of Biological Macromolecules, 124: 796–801. https://doi.org/10.1016/j.ijbiomac.2018.11.249
- Hussein, A., Hussein, M., Salama, M., Hamed, I., Fouda, K., & Mohamed, R. (2018). Formulation and Evaluation of Functional Cookies for Improving Health of Primary School Children. Pakistan Journal of Biological Sciences, 21: 401–408. https://doi.org/10.3923/pjbs.2018.401.408.
- International Plant Genetic Resources Institute (IPGRI). (2001). Phaseolus vulgaris descriptors. Recuperado de https://n9.cl/77svs
- Intiquilla, A., Jiménez-Aliaga, K., Zavaleta, A., Arnao, I., Peña, C., Chávez-Hidalgo, E., & Hernández-Ledesma, B. (2016). Erythrina edulis (Pajuro) Seed Protein: A New Source of Antioxidant Peptides. Natural Product Communications, 11(6): 781–786.
- https://doi.org/10.1177/1934578X1601100620
- Jafari, M., Koocheki, A., & Milani, E. (2017). Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates. Journal of Cereal Science, 75: 324–331. http://dx.doi.org/10.1016/j.jcs.2017.05.005
- Jones, O. (2016). Recent advances in the functionality of non-animal sourced proteins contributing to their use in meat analogs. Current Opinion Food Science, 7: 7–13. https://doi.org/10.1016/j.cofs.2015.08.002
- Karatas, C., Günay, D., & Sayar, S. (2017). In vitro evaluation of whole faba bean and its seed coat as a potential source of functional food components Selen. Food Chemistry, 230: 182–188. https://doi.org/10.1016/j.foodchem.2017.03.037
- Koksel, F., & Masatcioglu, M. (2018). Physical properties of puffed yellow pea snacks produced by nitrogen gas assisted extrusion cooking. LWT - Food Science Technology, 93: 592 – 598. https://doi.org/10.1016/j.lwt.2018.04.011
- Leal, M., Alves, R., & Hanazaki, N. (2018). Knowledge, use, and disuse of unconventional food plants. Journal Ethnobiology Ethnomedicine, 14:6. https://doi.org/10.1186/s13002-018-0209-8
- Mejía, M., Jaramillo, A., & Barrera, N. (1993). Estudios preliminares sobre desarrollo y manejo de la semilla de chachafruto, Erythrina edulis Triana. Universidad Nacional de Colombia. Acta Agronómica, 43(1- 4): 57–68. https://n9.cl/x570
- Meng, X., Threinen, D., Hansen, M., & Driedger, D. (2010). Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Research International, 43(2): 650–658. https://doi.org/10.1016/j.foodres.2009.07.016
- Miano, A., García, J., & Augusto, P. (2015). Correlation between morphology, hydration kinetics and mathematical models on Andean lupin (Lupinus mutabilis Sweet) grains. LWT - Food Science Technology, 61(2): 290–298. https://doi.org/10.1016/j.lwt.2014.12.032
- Nevara, G., Yea, C., Karim, R., Muhammad, K., & Ghazali, H. (2018). Effects of moist-heat treatments on color improvement, physicochemical, antioxidant, and resistant starch properties of drum-dried purple sweet potato powder. Journal of Food Process Engineering, 42(1): e12951. https://doi.org/10.1111/jfpe.12951
- Nyombaire, G., Siddiq, M., & Dolan, K. (2011). Physico-chemical and sensory quality of extruded light red kidney bean (Phaseolus vulgaris L.) porridge. LWT - Food Science and Technology, 44: 1597–1602. https://doi.org/10.1016/j.lwt.2011.02.016
- Seth, D., Badwaik., L & Ganapathy, V. (2015). Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food. Journal of Food Science and Technology, 52(3): 1830–1838. https://doi.org/10.1007/s13197-013-1181-x
- Sharififar, A., Nazari, M., & Asghari, H. (2015). Effect of ultrasonic waves on seed germination of Atriplex lentiformis, Cuminum cyminum, and Zygophyllum eurypterum. Journal of Applied Research on Medicinal and Aromatic Plants, 2(3):102–104. http://dx.doi.org/10.1016/j.jarmap.2015.05.003
- Singh, S., Gamlath, S., & Wakeling, L. (2007). Nutritional aspects of food extrusion: a review. International Journal of Food Science and Technology, 42: 916–929. https://doi.org/10.1111/j.1365-2621.2006.01309.x
- Stojceska, V., Ainsworth, P., Plunkett, A., & Ibanoglu, S. (2009). The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chemistry, 114(1): 226–232. http://dx.doi.org/10.1016/j.foodchem.2008.09.043.
- Villafuerte, F., Pérez, E., Mahfoud, A., Valero, Y., & Pérez, A. (2019). Obtención de hidrolizados proteicos bajos en fenilalanina a partir de suero dulce de leche y chachafruto (Erythrina edulis Triana). Archivos Latinoamericanos de Nutrición, 69(1): 25–33. https://n9.cl/likz
- Wang, Z., Hea, X., Yana, L., Wanga, J., Hub, X., Sunc, Q., & Zhang, H. (2020). Enhancing enzymatic hydrolysis of corn stover by twin-screw extrusion pretreatment. Industrial Crops and Products, 143: 111960. https://doi.org/10.1016/j.indcrop.2019.111960
- Ye, J., Hu, X., Luo, S., Liu, W., Chen, J., Zeng, Z., & Liu, C. (2018). Properties of Starch after Extrusion: A Review. Starch, 70 (11–12). https://doi.org/10.1002/star.201700110
- Zhang, B., Liu, G., Ying, D., Sanguansria, L., & Augustina, M. (2017). Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal. Food Research International, 100(1): 658–664. https://doi.org/10.1016/j.foodres.2017.07.060.