Vol. 20 No. 4 (2018)
Original articles

Molecular identification of lactic acid bacteria with probiotic properties isolated from the posterior intestine of Nile tilapia (Orechromis niloticus)

Arnaldo E. Castañeda
Research and training company in molecular biotechnology , Incabiotec - Tumbes, Peru
Jorge L. Aguilar
Research and training company in molecular biotechnology , Incabiotec - Tumbes, Peru
Adrian E. Zatan
Research and training company in molecular biotechnology , Incabiotec - Tumbes, Peru
Odalis E. Toledo
Research and training company in molecular biotechnology , Incabiotec - Tumbes, Peru
Manuel A. Feria
Research and training company in molecular biotechnology , Incabiotec - Tumbes, Peru
Deysy Castillo
Research and training company in molecular biotechnology , Incabiotec - Tumbes, Peru

Published 2018-12-29

Keywords

  • lactic acid bacteria,
  • probiotics,
  • molecular identification,
  • intestine,
  • tilapia

How to Cite

Castañeda, A. E. ., Aguilar, J. L. ., Zatan, A. E. ., Toledo, O. E. ., Feria, M. A. ., & Castillo, D. . (2018). Molecular identification of lactic acid bacteria with probiotic properties isolated from the posterior intestine of Nile tilapia (Orechromis niloticus). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(4), 429-438. https://doi.org/10.18271/ria.2018.420

Abstract

Probiotic bacteria in aquaculture represent a control alternative and prevention of pathogens, in addition, reduce the use of antibiotics. However, it is necessary to search for other groups of bacteria with similar or better properties, obtained even from the same source. The aim of the study was to identify molecularly lactic acid bacteria with probiotic properties isolated from the posterior intestine of Nile tilapia (Oreochromis niloticus). The study was carried out from November 2017 to March 2018 evaluating the antagonistic, proteolytic, amylolytic, and antibiotic sensitivity activities, and antagonistic to the following pathogens: Aeromonas hydrophilaAeromonas veroniiPseudomonas aeruginosaPseudomonas putida and Plesiomonas shigelloides. It was identified by sequencing the 16S rRNA gene that Enterococcus faecium (IP5-2a) and Pediococcus pentosaceus (IP5-2b) inhibited the growth of pathogens, in addition, were sensitive to the antibiotics chloramphenicol, amoxicillin/clavulanic acid, gentamicin, erythromycin and tetracycline, respectively. The results show that E. faecium and P. pentosaceus possess the best antagonistic activities, property of greater relevance to determine a potentially probiotic bacterium. Therefore, it is concluded that the bacteria identified in the present study are good candidates to be considered probiotic, however, it is necessary to confirm their in vivo properties.

References

  1. Abedian Amiri, A., Azari Takami, G., Afsharnasab, M., & Razavilar, V. (2017). The comparative effects of dietary supplementation with Pediococcus acidilactici and Enterococcus faecium on feed utilization, various health-related characteristics and yersiniosis in rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Iranian Journal of Fisheries Sciences, 16(2), 753-773. http://jifro.ir/article-1-2747-en.html.
  2. Akhter, N., Wu, B., Memon, A. M., & Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: a review. Fish & shellfish immunology, 45(2), 733-741. doi: 10.1016/j.fsi.2015.05.038.
  3. Aly, S. M., Mohamed, M. F., & John, G. (2008). Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquaculture research, 39(6), 647-656. doi: 10.1111/j.1365-2109.2008.01932.x.
  4. Ammor, M. S., Flórez, A. B., & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology, 24(6), 559-570. doi: 10.1016/j.fm.2006.11.001.
  5. Argota, P.G. & Iannacone, O.J. (2017). Comportamiento de refugio y actividad de la acetilcolinesterasa cerebral en Gambusia punctata (Poey, 1854) (Poeciliidae) por plomo biodisponible. Revista The Biologist; 17(1), 141-153. https://www.researchgate.net/publication/323675051
  6. Asencios, Y. O., Sánchez, F. B., Mendizábal, H. B., Pusari, K. H., Alfonso, H. O., Sayán, A. M., & Chaupe, N. S. (2016). First report of Streptococcus agalactiae isolated from Oreochromis niloticus in Piura, Peru: Molecular identification and histopathological lesions. Aquaculture Reports, 4, 74-79. doi: 10.1016/j.aqrep.2016.06.002.
  7. Bajpai, V. K., Jeong-Ho, H., Rather, I. A., Majumder, R., Nam, G. J., ChanSeo, P., & Yong-Ha, P. (2016). Characterization of lactic acid bacterium Pediococcus pentosaceus 4I1 from fresh water fish Zacco koreanus and its antibacterial mode of action. PeerJ PrePrints. doi: 10.7287/peerj.preprints.2121v1.
  8. Balcázar, J. L., Vendrell, D., de Blas, I., Ruiz-Zarzuela, I., Muzquiz, J. L., & Girones, O. (2008). Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278(1-4), 188-191. doi: 10.1016/j.aquaculture.2008.03.014.
  9. Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in veterinary science, 115, 66-77. doi: 10.1016/j.rvsc.2017.01.016.
  10. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493. https://www.ncbi.nlm.nih.gov/pubmed/5325707.
  11. Bidhan D. C., Meena, D. K., Behera, B. K., Das, P., Mohapatra, P. D., & Sharma, A. P. (2014). Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish physiology and biochemistry, 40(3), 921-971. doi: 0.1007/s10695-013-9897-0.
  12. Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture, 306(1-4), 7-23. doi: 10.1016/j.aquaculture.2010.05.020.
  13. Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environmental microbiology, 15(7), 1917-1942. doi: 10.1111/1462-2920.12134.
  14. Castillo, D. 2017. Caracterización molecular de la microbiota intestinal de alevines de paiche Arapaima gigas y selección de cepas potencialmente probióticas. Tesis de maestría, Universidad Nacional de Tumbes, Tumbes. Perú. 38 pp.
  15. Chemlal-Kherraz, D., Sahnouni, F., Matallah-Boutiba, A., & Boutiba, Z. (2012). The probiotic potential of lactobacilli isolated from Nile tilapia (Oreochromis niloticus)’s intestine. African Journal of Biotechnology, 11(68), 13220-13227. doi: 10.5897/AJB12.748.
  16. Del'Duca, A., Cesar, D. E., Diniz, C. G., & Abreu, P. C. (2013). Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture, 388, 115-121. doi: 10.1016/j.aquaculture.2013.01.019.
  17. do Vale Pereira, G., da Cunha, D. G., Pedreira Mourino, J. L., Rodiles, A., Jaramillo‐Torres, A., & Merrifield, D. L. (2017). Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria. Journal of applied microbiology, 123(5), 1298-1311. doi: 10.1111/jam.13572.
  18. FAO (2018). El estado mundial de la pesca y la acuicultura. http://www.fao.org/3/I9540EN/i9540en.pdf.
  19. Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of applied microbiology, 119(4), 917-935. doi: 10.1111/jam.12886.
  20. Huicab-Pech, Z. G., Castañeda-Chávez, M. R., & Lango-Reynoso, F. (2017). Pathogenic Bacteria in Oreochromis Niloticus Var. Stirling Tilapia Culture. Fish Aqua J, 8:197. doi: 10.4172/2150-3508.1000197.
  21. Huicab-Pech, Z. G., Landeros-Sánchez, C., Castañeda-Chávez, M. R., Lango-Reynoso, F., López-Collado, C. J., & Platas Rosado, D. E. (2016). Current State of Bacteria Pathogenicity and their Relationship with Host and Environment in Tilapia Oreochromis niloticus. J Aquac Res Development, 7(5). doi: 10.4172/2155-9546.1000428.
  22. Kaktcham, P. M., Temgoua, J. B., Zambou, F. N., Diaz-Ruiz, G., Wacher, C., & de Lourdes Pérez-Chabela, M. (2018). In Vitro Evaluation of the Probiotic and Safety Properties of Bacteriocinogenic and Non-Bacteriocinogenic Lactic Acid Bacteria from the Intestines of Nile Tilapia and Common Carp for Their Use as Probiotics in Aquaculture. Probiotics and antimicrobial proteins, 10(1), 98-109. doi: 10.1007/s12602-017-9312-8.
  23. Lara-Flores, M., & Olvera-Novoa, M. A. (2013). The use of lactic acid bacteria isolated from intestinal tract of Nile tilapia (Oreochromis niloticus), as growth promoters in fish fed low protein diets. Latin American Journal of Aquatic Research, 41(3). doi: 103856/vol41-issue3-fulltext-12.
  24. Lazado, C. C., & Caipang, C. M. A. (2014). Mucosal immunity and probiotics in fish. Fish & shellfish immunology, 39(1), 78-89. doi: 10.1016/j.fsi.2014.04.015.
  25. Lazado, C. C., Caipang, C. M. A., Brinchmann, M. F., & Kiron, V. (2011). In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Veterinary microbiology, 148(2-4), 252-259. doi: 10.1016/j.vetmic.2010.08.024.
  26. Martínez Cruz, P., Ibáñez, A. L., Monroy Hermosillo, O. A., & Ramírez Saad, H. C. (2012). Use of probiotics in aquaculture. ISRN microbiology, 2012. doi: 10.5402/2012/916845.
  27. Martinez, M. P., Gonzalez Pereyra, M. L., Pena, G. A., Poloni, V., Fernandez Juri, G., & Cavaglieri, L. R. (2017). Pediococcus acidolactici and Pediococcus pentosaceus isolated from a rainbow trout ecosystem have probiotic and ABF1 adsorbing/degrading abilities in vitro. Food Additives & Contaminants: Part A, 34(12), 2118-2130. doi: 10.1080/19440049.2017.1371854
  28. Modi, S. R., Collins, J. J., & Relman, D. A. (2014). Antibiotics and the gut microbiota. The Journal of clinical investigation, 124(10), 4212-4218. doi: 10.1172/JCI72333.
  29. Mohapatra, S., Chakraborty, T., Prusty, A. K., PaniPrasad, K., & Mohanta, K. N. (2014). Beneficial effects of dietary probiotics mixture on hemato-immunology and cell apoptosis of Labeo rohita fingerlings reared at higher water temperatures. PloS one, 9(6), e100929. doi: 10.1371/journal.pone.0100929.
  30. Moslehi, F., Sattari, M., & Masouleh, A. S. (2016). Effects of Pediococcus pentosaceus as a probiotic on intestinal microbiota and body composition of Siberian sturgeon, Acipenser baerii Brandt, 1869. International Journal of Aquatic Biology, 4(1), 11-16.
  31. Nandi, A., Dan, S. K., Banerjee, G., Ghosh, P., Ghosh, K., Ringø, E., & Ray, A. K. (2017). Probiotic potential of autochthonous bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Probiotics and antimicrobial proteins, 9(1), 12-21. doi: 10.1007/s12602-016-9228-8.
  32. Peso-Echarri, P., Frontela-Saseta, C., González-Bermúdez, C. A., Ros-Berruezo, G. F., & Martínez-Graciá, C. (2012). Polisacáridos de algas como ingredientes funcionales en acuicultura marina: alginato, carragenato y ulvano. Revista de biología marina y oceanografía, 47(3), 373-381. doi: 10.4067/S0718-19572012000300001.
  33. Petersen, A., & Dalsgaard, A. (2003). Species composition and antimicrobial resistance genes of Enterococcus spp., isolated from integrated and traditional fish farms in Thailand. Environmental Microbiology, 5(5), 395-402. doi: https://www.ncbi.nlm.nih.gov/pubmed/12713465.
  34. Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N., & Maita, M. (2011). Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research in veterinary science, 91(3), e92-e97. doi: 10.1016/j.rvsc.2011.02.014.
  35. Ray, A. K., Ghosh, K., & Ringø, E. (2012). Enzyme‐producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465-492. doi: 10.1111/j.1365-2095.2012.00943.x
  36. Reda, R. M., Selim, K. M., El-Sayed, H. M., & El-Hady, M. A. (2017). In Vitro Selection and Identification of Potential Probiotics Isolated from the Gastrointestinal Tract of Nile Tilapia, Oreochromis niloticus. Probiotics and antimicrobial proteins, 1-12. doi: 10.1007/s12602-017-9314-6.
  37. Ringo E. (2008). The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquaculture Research, 39, 171-180. doi: 10.1111/j.1365-2109.2007.01876.x
  38. Rodgers, C. J., & Furones, M. D. (2009). Antimicrobial agents in aquaculture: practice, needs and issues. Options Méditerranéennes, 86, 41-59. doi: 10.13140/2.1.4697.0560.
  39. Romero, J., Feijoó, C. G., & Navarrete, P. (2012). Antibiotics in aquaculture–use, abuse and alternatives. In Health and environment in aquaculture. InTech. doi: 10.5772/28157.
  40. Sihag, R. C., & Sharma, P. (2012). Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. Journal of Fisheries and Aquatic Science, 7(2), 72. doi: 10.3923/jfas.2012.72.103.
  41. Tarnecki, A. M., Burgos, F. A., Ray, C. L., & Arias, C. R. (2017). Fish intestinal microbiome: diversity and symbiosis unraveled by metagenomics. Journal of applied microbiology. doi: 10.1111/jam.13415.
  42. Temmerman, R., Pot, B., Huys, G., & Swings, J. (2003). Identification and antibiotic susceptibility of bacterial isolates from probiotic products. International Journal of Food Microbiology, 81(1), 1-10. https://www.ncbi.nlm.nih.gov/pubmed/12423913.
  43. Vidal, L. V. O., Albinati, R. C. B., Albinati, A. C. L., Lira, A. D. D., Almeida, T. R. D., & Santos, G. B. (2008). Eugenol as an anesthetic for Nile tilapia. Pesquisa Agropecuária Brasileira, 43(8), 1069-1074. doi: 10.1590/S0100-204X2008000800017.
  44. Vijayabaskar, P., & Somasundaram, S. T. (2008). Isolation of bacteriocin producing lactic acid bacteria from fish gut and probiotic activity against common fresh water fish pathogen Aeromonas hydrophila. Biotechnology, 7(1), 124-128. doi: 10.3923/biotech.2008.124.128.
  45. Vlková, E., Rada, V., Popelářová, P., Trojanová, I., & Killer, J. (2006). Antimicrobial susceptibility of bifidobacteria isolated from gastrointestinal tract of calves. Livestock Science, 105(1), 253-259. doi: 10.1016/j.livsci.2006.04.011.
  46. Wang, M., & Lu, M. (2016). Tilapia polyculture: a global review. Aquaculture research, 47(8), 2363-2374. doi: 10.1111/are.12708.
  47. Yang, H. L., Xia, H. Q., Ye, Y. D., Zou, W. C., & Sun, Y. Z. (2014). Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Diseases of aquatic organisms, 111(2), 119-127. doi: 10.3354/dao02772.
  48. Zorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary Quarterly, 36(4), 228-241. doi: 10.1080/01652176.2016.1172132.