Vol. 22 No. 4 (2020)
Short article

Temperature preference by bats in the montane forests of Machu Picchu, Peru

Sandra Arias
Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Peru
Darwin R. Díaz
Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Peru
César E. Medina
Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Peru

Published 2020-10-01

Keywords

  • Thermal preference,
  • bats,
  • temperature

How to Cite

Arias, S., Díaz, D. R., & Medina, C. E. (2020). Temperature preference by bats in the montane forests of Machu Picchu, Peru. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 347–351. https://doi.org/10.18271/ria.2020.198

Abstract

Information on the thermal preference of bats goes back to studies carried out since the middle of the 20th century, mainly in NorthAmerica and Europe. Here we present information on the thermal preference of six bat species in the cloud forests of the HistoricSanctuary of Machu Picchu (Cusco, Peru). The data were obtained in field using a thermographic camera and an infrared thermometer.Our results show the intervals and averages of the selected temperatures, as well as the differences between sexes of each species. Thisinformation constitutes the first effort in Peru to understand the temperature ranges that natural and artificial bat refuges should have.

References

  1. Ávila-Flores, R., y Medellín, R. A. (2004). Ecological, Taxonomic, and Physiological Correlates of Cave Use by Mexican Bats. Journal of Mammalogy, 85(4), 675–687. https://doi.org/10.1644/bos-127.
  2. Bonaccorso, F. J., Arends, A., Genoud, M., Cantoni, D., y Morton, T. (1992). Thermal Ecology of Moustached and Ghost-Faced Bats (Mormoopidae) in Venezuela. Journal of Mammalogy, 73(2), 365–378. https://doi.org/10.2307/1382071.
  3. Bronner, G. N., Maloney, S. K., y Buffenstein, R. (1999). Survival tactics within thermally-challenging roosts: Heat tolerance and cold sensitivity in the Angolan free-tailed bat, Mops condylurus. South African Journal of Zoology, 34(1), 1–10. https://doi.org/10.1080/02541858.1999.11448481.
  4. Currie, S. E., Noy, K., y Geiser, F. (2015). Passive rewar- ming from torpor in hibernating bats: Minimizing me- tabolic costs and cardiac demands. American Journal of Physiology-Regulatory Integrative and Comparative Phy- siology, 308(1), R34–R41. https://doi.org/10.1152/ajpregu.00341.2014.
  5. de Oliveira, H. F. M., Oprea, M., y Dias, R. I. (2018). Distributional patterns and ecological determinants of bat occurrence inside caves: A broad scale meta-analysis. Diversity, 10(3), 49. https://doi.org/10.3390/d10030049.
  6. Flaquer, C., Torre, I., y Arrizabalaga, A. (2007). Selección de refugios, gestión forestal y conservación de los quirópteros forestales. In J. Camrodon y E. Plana (Eds.), Conservación de la biodiversidad, fauna vertebrada y gestión forestal (pp. 470–488). Universitat de Barcelona. http://www.museugranollersciencies.org/pdf/quiropters/Flaquer.etal.ConsBiodiv.pdf.
  7. Gaisler, J. (1970). Remarks on the Thermopreferendum of Palearctic Bats in their Natural Habitats. Bijdragen Tot de Dierkunde, 40(1), 49–50. https://doi.org/10.1163/26660644-04001014.
  8. Harmata, W. (1969). The Thermopreferendum of Some Species of Bats. Acta Theriologica, XIV(5), 49–62. http://rcin.org.pl/Content/9736/BI002_2613_Cz-40-2_Acta-T14-nr5-48-62_o.pdf.
  9. Herreid, C. (1967). Temperature Regulation, Temperature Prefe- rence and Tolerance, and Metabolism of Young and Adult Free-Tailed Bats. Physiological Zoology, 40(1), 1–22. www. jstor.org/stable/30152434.
  10. Hoeh, J. P. S., Bakken, G. S., Mitchell, W. A., y O’Keefe, J. M. (2018). In artificial roost comparison, bats show preference for rocket box style. PLoS ONE, 13(10), 1–16. https://doi. org/10.1371/journal.pone.0205701.
  11. Kunz, T. H. (1982). Roosting ecology of bats. In T. H. Kunz (Ed.), Ecology of bats (pp. 1–55). Springer. https://doi.org/10.1007/978-1-4613-3421-7.
  12. López, D. (2018). Caracterización de comunidades de murciéla- gos en cuevas de Napo, Ecuador y posibles efectos del es- peleoturismo [Tesis de Licenciatura, Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/handle/22000/14681.
  13. Ortiz-Ramírez, D., Lorenzo, C., Naranjo, E., y León-Paniagua, L. (2006). Selección de refugios por tres especies de murciélagos frugívoros (Chiroptera: Phyllostomidae) en la Selva Lacandona, Chiapas, México. Revista Mexicana de Biodiversidad, 77(2), 261–270. https://doi.org/10.22201/ib. 20078706e.2006.002.341.
  14. Otto, M. S., Becker, N. I., y Encarnação, J. A. (2015). Stage of pregnancy dictates heterothermy in temperate forest- dwelling bats. Journal of Thermal Biology, 47, 75–82. https://doi.org/10.1016/j.jtherbio.2014.11.008.
  15. Otto, M. S., Becker, N. I., y Encarnação, J. A. (2016). Roost characteristics as indicators for heterothermic behavior of forest-dwelling bats. Ecological Research, 31(3), 385–391. https://doi.org/10.1007/s11284-016-1348-9.
  16. Peñuela-Salgado, M., y Pérez-Torres, J. (2015). Environmental and spatial characteristics that affect roost use by Seba’s short-tailed bat (Carollia perspicillata) in a Colombian cave. Journal of Cave and Karst Studies, 77(3), 160–164. https://doi.org/10.4311/2015LSC0105.
  17. Phelps, K., Jose, R., Labonite, M., y Kingston, T. (2016). Correlates of cave-roosting bat diversity as an effective tool to identify priority caves. Biological Conservation, 201, 201–209. https://doi.org/10.1016/j.biocon.2016.06.023.
  18. Rodríguez-Durán, A. (1995). Metabolic rates and thermal conductance in four species of neotropical bats roosting in hot caves. Comparative Biochemistry and Physiology – Part A: Physiology, 110(4), 347–355. https://doi.org/10.1016/0300-9629(94)00174-R.
  19. Rodríguez-Durán, A., y Soto-Centeno, J. A. (2003). Temperature selection by tropical bats roosting in caves. Journal of Thermal Biology, 28(6–7), 465–468. https://doi.org/10.1016/S0306-4565(03)00046-9.
  20. Rodríguez-Herrera, B., Víquez-R, L., Cordero-Schmidt, E., Sandoval, J. M., y Rodríguez-Durán, A. (2016). Energetics of tent roosting in bats: The case of Ectophylla alba and Uroderma bilobatum (Chiroptera: Phyllostomidae). Journal of Mammalogy, 97(1), 246–252. https://doi.org/10.1093/jmammal/gyv173.
  21. Soriano, P. J., Ruiz, A., & Arends, A. (2002). Physiological Responses To Ambient Temperature Manipulation By Three Species of Bats From Andean Cloud Forests. Journal of Mammalogy, 83(2), 445–457. https://doi.org/10.1644/1545-1542(2002)083<0445:PRTATM>2.0.CO;2.
  22. Suárez-Payares, L. M., y Lizcano, D. J. (2011). Uso de refugios por tres especies de murciélagos filostómidos (Chiroptera: Phyllostomidae) en el área natural única Los Estoraques, Norte de Santander, Colombia. Mastozoologia Neotropical, 18(2), 259–270. https://www.redalyc.org/articulo.oa?id= 45722044008.
  23. Torres-Flores, J. W., y López-Wilchis, R. (2010). Condiciones microclimáticas, hábitos de percha y especies asociadas a los refugios de Natalus stramineus en México. Acta Zoológica Mexicana, 26(1), 191–213. https://doi.org/10.2182/azm.2010.261687.
  24. Torres-Flores, J. W., López-Wilchis, R., y Soto-Castruita, A. (2012). Dinámica poblacional, selección de sitios de percha y patrones reproductivos de algunos murciélagos cavernícolas en el oeste de México. Revista de Biologia Tropical, 60(3), 1369–1389. https://doi.org/10.15517/rbt.v60i3.1814.
  25. Webber, Q. M. R., y Willis, C. K. R. (2018). An experimental test of effects of ambient temperature and roost quality on aggregation by little brown bats (Myotis lucifugus). Journal of Thermal Biology, 74, 174–180. https://doi.org/10.1016/j.jtherbio.2018.03.023.