Effect of the microalgae Chlorella vulgaris on the management of larvae and fry of Orestias luteus native to Lake Titicaca, Peru
Published 2023-04-30
Keywords
- Acuicultura, alimentación, microalga, Carachi amarillo
How to Cite
Abstract
The test was carried out in the month of March 2021 at the Continental Laboratory of Puno - IMARPE, in order to determine the effect of the use of the microalga Chlorella vulgaris as food at the beginning of the ontogeny of Orestias luteus, a test was carried out with 1600 larvae kept in two 45 L aquariums. One aquarium with Chlorella vulgaris (green water), and the other aquarium without Chlorella vulgaris (clear water). It is reflected that during the first 7 days the larvae fed and maintained with microalgae presented higher survival due to the high nutritional level that the microalgae presents, such as docosahexaenoic acid (DHA), apparently influenced the development of the Orestias Luteos larvae. Likewise, when added directly to the aquariums, the microalgae exerted a positive influence on the physiological state of Orestias luteus larvae, which translates into the obtaining of high-quality fingerlings.
It is concluded that live food such as planktonic organisms constitute the feeding base in the larval stage of Carachi Amarillo and obtaining high survival of seeds allowing better growth and greater survival.
References
- Abalde J, Cid A, Fidalgo J, Torres E, Herrero C. (1996). Microalgas: cultivo y aplicaciones. La Coruña: Servicio de Publicaciones; 1996. https://doi.org/10.17979/spudc.9788497497695
- Anthony, J., Sivashankarasubbiah, K.T., Thonthula, S., Rangamaran, V.R., Gopal, G. & Ramalingam, K. (2018). An efficient method for the sequential production of lipid and carotenoids from the Chlorella growth Factor-extracted biomass of Chlorella vulgaris. J Appl Phycol; 30, 2325-2335. Doi: https://doi.org/10.1007/s10811-018-1430-5
- Dabrowski, K., (1984). The feeding of fish larvae: present «state of the art» and perspectives. Reproduction Nutrition Développement, 24(6), 807-833.
- Devillers, C., (1961) Structural and dymanic aspects of the development of the teleostean egg. Adv. Morphol. 1.379 -428.
- Duerr, E., A. Molnar y V. Sato. (1998). Culture microalgae as aquaculture feeds. Journal Marine Biotechnology, 7:65-70.
- Emparan, Q., Harun, R. & Danquah, M.K. (2019). Role of phycoremediation for nutrient removal from wastewaters: a review. Appl Ecol Environ Res; 17, 889-915. Doi: https://doi.org/10.15666/año/1701_889915
- Emparan, Q., Harun, R. & Danquah, M.K. (2019). Role of phycoremediation for nutrient removal from wastewaters: a review. Appl Ecol Environ Res; 17, 889-915. Doi: https://doi.org/10.15666/año/1701_889915
- Falkowski, P., J. A. Raven (1997). “Aquatic photosynthesis.” ED. Blackwell Science 384 p.
- Kent, M., Welladsen, H.M., Mangott, A. & Li, Y. (2015). Nutritional evaluation of Australian
- Makridis P., Alves Costa R., Dinis M.T. (2006) Microbial conditions and antimi-crobial activity in cultures of two microalgae species. Tetraselmis chuii and Chlorella minutissima, and effect on bacterial load of enriched Artemia metanauplii. Aquaculture, 255: 76-81. http://dx.doi.org/10.1016/j.aquaculture.2005.12.010
- Méndez M. Evaluación de la remoción de fósforo y nitrógeno de aguas residuales por el alga Chlorella sp. Revista Clon 2003; 2: 42-46. 2.
- Milhazes-Cunha, H., & Otero, A. (2017). Valorisation of aquaculture effluents with microalgae: The Integrated Multi-Trophic Aquaculture concept. Algal Research, 24, 416-424. doi: https://doi.org/10.1016/j.algal.2016.12.011.
- Mohd Yunos, F. H., Nasir, N. M., Wan Jusoh, H. H., Khatoon, H., Lam, S. S., & Jusoh, A. (2017). Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant. International Biodeterioration & Biodegradation, 124, 243-249. doi: https://doi.org/10.1016/j.ibiod.2017.07.016
- Moronta R, Mora R, Morales E. (2006) Respuesta de la microalga Chlorella sorokiniana al pH, salinidad y temperatura en condiciones axenicas y no axenicas. Rev. Fac. Agron. 2006; 23: 27-41.
- Muller-Feuga A. (2004) Microalgae for aquaculture: the current global situation and future trends. En: Handbook of microalgal culture Richmond A. (ed). Blackwell Science, pp 352–364.
- Olsen A.I., Olsen Y., Attramadal Y., Christie K., Birkbeck T.H., Skjermo J., Vadstein O. (2000) Effect of short term feeding of microalgae on the bacterial flora associated with juvenile Artemia franciscana. Aquaculture, 190: 11-25.
- Ponis E., Robert R., Parisi G. (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 221: 491-505.
- Raji, A. A., Alaba, P. A., Yusuf, H., Abu Bakar, N. H., Mohd Taufek, N., Muin, H., Abdul Razak, S. (2018). Fishmeal replacement with Spirulina Platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: Effect on antioxidant enzyme activities and haematological parameters. Research in Veterinary Science, 119, 67-75. doi: https://doi.org/10.1016/j.rvsc.2018.05.013
- Spolaore P., Joannis-Cassan C., Duran E., Isambert A. (2006) Commercial applications of microalgae. Journal of Biosciences and Bioengineering, 101:87–96. DOI: https://doi.org/10.1263/jbb.101.87
- Velazquez, L.J., Rodríguez, J.R.M., Colla, L.M., Saenz, G.A., Cervantes, C.E., Aguilar, C.N. & Ruiz, H.A. (2018). Microalgal biomas pretreatment for bioethanol Production: a review. Biofuel Res J; 17, 780–791. Doi: https://doi.org/10.18331/BRJ2018.5.1.5
- Velazquez, L.J., Rodríguez, J.R.M., Colla, L.M., Saenz, G.A., Cervantes, C.E., Aguilar, C.N.
- Wang, J., Jin, W., Hou, Y., Niu, X., Zhang, H. & Zhang, Q. (2013). Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int J Biol Macromol; 57, 26-29. Doi: https://doi.org/10.1016/j.enconman.2018.06.083