Vol. 25 No. 1 (2023)
Original articles

Characterization and modeling of microbial growth in the development of a non-dairy probiotic drink made from tarwi plant extract (Lupinus mutabilis S.)

Edith Jessica Colque Cruz
Centro de Investigación de Tecnología de Alimentos, Universidad Peruana Unión, Juliaca
Alex Danny Chambi-Rodriguez
Centro de Investigación de Tecnología de Alimentos, Universidad Peruana Unión, Juliaca, Perú
Noe Benjamín Pampa-Quispe
Escuela Profesional de Ingeniería de Industrias Alimentarias, Universidad Nacional de Barranca, Lima, Perú

Published 2023-01-31

Keywords

  • Probiotics,
  • Gompertz Model,
  • Lupinus,
  • Boulardii

How to Cite

Colque Cruz, E. J., Chambi-Rodriguez, A. D., & Pampa-Quispe, N. B. (2023). Characterization and modeling of microbial growth in the development of a non-dairy probiotic drink made from tarwi plant extract (Lupinus mutabilis S.). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 25(1), 41-48. https://doi.org/10.18271/ria.2023.501

Abstract

The present study, had the purpose of developing a fermented non-dairy probiotic drink based on tarwi, for this purpose the legume was unmarked, and then obtained Tarwi Vegetable Extract (EVQ) by blending it, then proceeded to make mixtures with sucrose (6 and 12%) and inoculum of Saccharomyces boulardii (2 and 4%) thus obtaining a total of 4 treatments (A1 - A4), the inoculation was performed at 37 ° C with constant agitation at 20 RPM for a period of 24 hours; where at three-hour intervals readings of the biomass increase were made with a microscope and a neubauer chamber expressed in (cfu / ml) at intervals of 3 hours, curves and kinetic parameters of microbial growth were constructed with the mathematical model of Gompertz, a monitoring of ° Brix, density, pH, and% of acidity was carried out, a linear regression analysis was applied; finally the adjustment of the mathematical modeling was carried out. The results of the microbial growth kinetics showed the stages of microbial growth in all treatments, however, A1 showed the best fit in the kinetic parameters (C = 0.652, B = 1.296, M = 0.408). On the other hand, negative slopes with respect to ° Brix, density, pH, and a positive slope in acidity were observed in the linear regression of the physicochemical properties. The behavior of the kinetics of microbial growth and the physicochemical changes presented good parameters and characteristics of a probiotic drink.

References

  1. Belda, C.; Pina, M.; Espinosa, J.; et al. 2014. Use of the modified Gompertz equation to assess the Stevia rebaudiana Bertoni antilisterial kinetics. Food Microbiology 38: 56–61.
  2. Carvalho, J.; Celiberto, L.; Orlando, A.; et al. 2018. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. Journal of Functional Foods 48: 302–313.
  3. Castro, G.; Valbuena, E.; Sánchez, E.; et al. 2008. Comparación de modelos sigmoidales aplicaddos al crecimiento de Lactococcus lactis subsp. Lactis. Revista Cientifica 18(5): 582-588.
  4. Cayré, M.; Vignolo, G.; Garro, A. 2007. Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y brochothrix thermosphacta sobre emulsiones cárnicas cocidas. Información Tecnológica 18(3): 23–29.
  5. Chavan, M.; Gat, Y.; Harmalkar, M.; et al. 2018. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT - Food Science and Technology 91: 339–344.
  6. Chirinos, M. 2015. Tarwi (Lupinus mutabilis Sweet) una planta con potencial nutritivo y medicinal. Revista Bio Ciencias 3(3): 163–172.
  7. Fazilah, N.; Ariff, A.; Khayat, M.; et al. 2018. Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods 48: 387–399.
  8. Gonzalez, J. (2012). Elaboración y evaluación nutricional de una bebida proteica a base de lactosuero y chocho (lupinus mutabilis) como suplemento alimenticio. Tesis de grado, Escuela Superior Politécnica de Chimborazo, Rio Bamba. Ecuador. 113 pp.
  9. Guel, P.; Hernández, J.; Rodríguez, G. 2018. Use of bacteria obtained from whey and its potential use as probiotics in the food industry. A short review. Revista Boliviana de Química 35(1): 40–45.
  10. Jover, J.; Cuevas, M.; Quintana, C. 2012. Evaluación industrial de levaduras del género Saccharomyces en la destilería George Washington. Revista de Tecnología Química 32: 42–52.
  11. Marin, M.; Madruga, N.; Rodrigues, R.; et al. 2014. Caracterização físico-química e sensorial de bebida probiótica de soja. Boletim Centro de Pesquisa de Processamento de Alimentos 32(1): 93–104.
  12. Montgomery, D.; Peck, E.; Vining, G. 2012. Introduction to Linear Regression Analysis. Volumen 821. Ediorial John Wiley & Sons, Estados Unidos. 661pp.
  13. Moreno, L.; Cervera, P.; Ortega, R.; et al. 2013. Evidencia científica sobre el papel del yogur y otras leches fermentadas en la alimentación saludable de la población española. Nutricion Hospitalaria, 28(6), 2039–2089.
  14. Muñoz, E.; Luna, D.; Fornasini, M.; et al. 2018. Gamma-conglutin peptides from Andean lupin legume (Lupinus mutabilis Sweet) enhanced glucose uptake and reduced gluconeogenesis in vitro. Journal of Functional Foods 45: 339–347.
  15. Nissen, L.; Di Carlo, E.; Gianotti, A. 2020. Prebiotic potential of hemp blended drinks fermented by probiotics. Food Research International 131: 109029
  16. Ortiz, Á.; Reuto, J.; Fajardo, E.; et al. 2008. Evaluación de la capacidad probiótica “in vitro” de una cepa nativa de Saccharomyces cerevisiae. Universitas Scientiarum 13(2): 138–148.
  17. Oviedo, J.; Casas, A.; Valencia, J.; et al. 2014. Análisis de la medición de la biomasa en fermentación en estado sólido empleando el modelo logístico y redes neuronales. Información Tecnológica 25(4): 141–152.
  18. Rodriguez, M.; Chambi, A. 2019. Determinación de la curva de crecimiento microbiano Saccharomyces Boulardii en Tunta variedades Chaska y Negra. Fides et Ratio, 18, 201–213.
  19. Silva, A.; Longhi, D.; Dalcanton, F.; et al. 2018. Modelling the growth of lactic acid bacteria at different temperatures. Brazilian Archives of Biology and Technology 61: 1–11.
  20. Swieca, M.; Kordowska, M.; Pytka, M.; et al. 2019. Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast. LWT - Food Science and Technology 100: 220–226.
  21. Torres, V.; Barbosa, I.; Meyer, R.; et al. 2012. Criterios de bondad de ajuste en la selección de modelos no lineales en la descripción de comportamientos biológicos. Revista Cubana de Ciencia Agrícola 46(4): 345–350.
  22. Trigueros, D.; Fiorese, M.; Kroumov, A.; et al. 2016. Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochemical Engineering Journal 110: 71–83.
  23. Uscanga, L.; Orozco, I.; Vázquez, R.; et al. 2019. Technical position on milk and its derivatives in adult health and disease from the Asociación Mexicana de Gastroenterología and the Asociación Mexicana de Gerontología y Geriatría. Revista de Gastroenterologia de Mexico 84(3): 357–371.
  24. Valbuena, E., Barreiro, J., Sánchez, E., Castro, G., Kutchinskaya, V., & Briñez, W. 2008. Predicción de, creciemiento de Lactococcus lactis subsp. lactis en leche descremada estéril en función a la temperatura. Revista Cientifica 18(6): 745-758.
  25. Valdovinos, L.; Abreu, A.; Valdovinos, M. 2019. Uso de probióticos en la práctica clínica: resultados de una encuesta nacional a gastroenterólogos y nutriólogos. Revista de Gastroenterologia de Mexico 84(3): 303–309.
  26. Vega, R.; Martinez, H.; Montañez, J.; Rodiles, J. 2016. Viabilidad de Saccharomyces boullardii en queso fresco bajo condiciones de acidez “in vitro.” Nova Scientia, 7(15), 68.
  27. Wirunpan, M.; Savedboworn, W.; Wanchaitanawong, P. 2016. Survival and shelf life of Lactobacillus lactis 1464 in shrimp feed pellet after fluidized bed drying. Agriculture and Natural Resources, 50(1), 1–7.