Vol. 26 No. 2 (2024)
Review article

Food application of germinated quinua and enhancement of its nutritional, biological and functional properties: A systematic review

Joselin Paucarchuco Soto
Universidad Nacional Autónoma Altoandina de Tarma. Escuela profesional de Ingeniería Agroindustrial. Huancucro N° 2092, Tarma, Junín, Perú
Jamir Ever Vilchez De la Cruz
Universidad Nacional Autónoma Altoandina de Tarma. Escuela profesional de Ingeniería Agroindustrial. Huancucro N° 2092, Tarma, Junín, Perú

Published 2024-05-02

Keywords

  • Chenopodium quinoa Willd,
  • germination,
  • bioactive compounds,
  • functional food,
  • antioxidant

How to Cite

Paucarchuco Soto, J., & Vilchez De la Cruz, J. E. (2024). Food application of germinated quinua and enhancement of its nutritional, biological and functional properties: A systematic review. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 26(2), 105-118. https://doi.org/10.18271/ria.2024.599

Abstract

The germination of quinua improves the content of polyphenols, flavonoids, amino acids, dietary fiber, vitamin E, antioxidants and other bioactive compounds, making this pseudocereal a nutritious and healthy source for the preparation of functional foods. The aim of this work was to assess the effect of the germination of quinua on the nutritional, biological and functional properties, in turn to be able to analyze the potential that this golden grain has in the food industry. For the systematic review, the databases (Scopus, Scielo and Science Direct) were used, following the PRISMA guideline and the PIO strategy (Population, Intervention, Outputs), which helped to formulate the search equations and to identify the most relevant articles of the last 5 years. The results of the bibliometric analysis showed that the germination of quinua improves the nutritional properties and the content of secondary metabolites, also represents a potential source for the development of food products with functional and nutraceutical properties. A recent study confirms that after 4 days of germination the total phenolic content of various types of quinua ranges between 39.29 and 782.15 mg/100 g, indicating a powerful ability to eliminate free radicals, turning this pseudocereal into a raw material with the ability to be applied in the formulation of various food products such as bread, cookies, pizzas, beverages, yogurt, cheeses, etc.

References

  1. Abbasi, S., Moslehishad, M., & Salami, M. (2022). Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. International Journal of Biological Macromolecules, 213, 602-609. https://doi.org/10.1016/j.ijbiomac.2022.05.189
  2. Aguilar, J., Miano, A. C., Obregón, J., Soriano-Colchado, J., & Barraza-Jáuregui, G. (2019). Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science, 90, 102858. https://doi.org/10.1016/j.jcs.2019.102858
  3. Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients, 12(10), Art. 10. https://doi.org/10.3390/nu12102904
  4. Badia-Olmos, C., Sánchez-García, J., Laguna, L., Zúñiga, E., Mónika Haros, C., Maria Andrés, A., & Tarrega, A. (2024). Flours from fermented lentil and quinoa grains as ingredients with new techno-functional properties. Food Research International, 177, 113915. https://doi.org/10.1016/j.foodres.2023.113915
  5. Balakrishnan, G., & Schneider, R. G. (2023). Tocopherol degradation and lipid oxidation during storage of Chenopodium quinoa. Journal of Food Composition and Analysis, 123, 105549. https://doi.org/10.1016/j.jfca.2023.105549
  6. Bhinder, S., Kumari, S., Singh, B., Kaur, A., & Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346, 128915. https://doi.org/10.1016/j.foodchem.2020.128915
  7. Cáceres, P. J., Peñas, E., Martínez-Villaluenga, C., García-Mora, P., & Frías, J. (2019). Development of a multifunctional yogurt-like product from germinated brown rice. LWT, 99, 306-312. https://doi.org/10.1016/j.lwt.2018.10.008
  8. Cao, Y., Zou, L., Li, W., Song, Y., Zhao, G., & Hu, Y. (2020). Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. International Journal of Biological Macromolecules, 163, 55-65. https://doi.org/10.1016/j.ijbiomac.2020.06.241
  9. Causin, H. F., Bordón, D. A. E., & Burrieza, H. (2020). Salinity tolerance mechanisms during germination and early seedling growth in Chenopodium quinoa Wild. Genotypes with different sensitivity to saline stress. Environmental and Experimental Botany, 172, 103995. https://doi.org/10.1016/j.envexpbot.2020.103995
  10. Ceyhun Sezgin, A., & Sanlier, N. (2019). A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Willd.). Trends in Food Science & Technology, 86, 51-58. https://doi.org/10.1016/j.tifs.2019.02.039
  11. Chaudhary, N., Walia, S., & Kumar, R. (2023). Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. Journal of Food Composition and Analysis, 118, 105192. https://doi.org/10.1016/j.jfca.2023.105192
  12. Chen, L., Wu, J., Li, Z., Liu, Q., Zhao, X., & Yang, H. (2019). Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chemistry, 286, 87-97. https://doi.org/10.1016/j.foodchem.2019.01.183
  13. Darwish, A. M. G., Al- Jumayi, H. A. O., & Elhendy, H. A. (2021). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti-anemic potential in Sprague–Dawley male albino rats. Cereal Chemistry, 98(2), 315-327. https://doi.org/10.1002/cche.10366
  14. De-La-Cruz-Yoshiura, S., Vidaurre-Ruiz, J., Alcázar-Alay, S., Encina-Zelada, C. R., Cabezas, D. M., Correa, M. J., & Repo-Carrasco-Valencia, R. (2023). Sprouted Andean grains: An alternative for the development of nutritious and functional products. Food Reviews International, 39(8), 5583-5611. https://doi.org/10.1080/87559129.2022.2083158
  15. Demir, B., & Bilgiçli, N. (2020). Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. Journal of Food Science and Technology, 57(10), 3884-3892. Scopus. https://doi.org/10.1007/s13197-020-04420-7
  16. Ding, L., Yang, Q., Zhang, E., Wang, Y., Sun, S., Yang, Y., Tian, T., Ju, Z., Jiang, L., Wang, X., Wang, Z., Huang, W., & Yang, L. (2021). Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharmaceutica Sinica B, 11(6), 1541-1554. https://doi.org/10.1016/j.apsb.2021.03.038
  17. FAOSTAT. (2022). FAOSTAT. https://www.fao.org/faostat/es/#data
  18. Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant’Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630. Scopus. https://doi.org/10.1080/10408398.2014.1001811
  19. Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165. https://doi.org/10.1016/j.tifs.2022.04.007
  20. Guardianelli, L. M., Salinas, M. V., Brites, C., & Puppo, M. C. (2022). Germination of White and Red Quinoa Seeds: Improvement of Nutritional and Functional Quality of Flours. Foods, 11(20), Art. 20. https://doi.org/10.3390/foods11203272
  21. Guo, H., Wu, H., Sajid, A., & Li, Z. (2022). Whole grain cereals: The potential roles of functional components in human health. Critical Reviews in Food Science and Nutrition, 62(30), 8388-8402. https://doi.org/10.1080/10408398.2021.1928596
  22. Jiménez, D., Lobo, M., Irigaray, B., Grompone, M. A., & Sammán, N. (2020). Oxidative stability of baby dehydrated purees formulated with different oils and germinated grain flours of quinoa and amaranth. LWT, 127, 109229. https://doi.org/10.1016/j.lwt.2020.109229
  23. José Rodríguez Gómez, M., Calvo Magro, P., Reguera Blázquez, M., Maestro-Gaitán, I., Sánchez Iñiguez, F. M., Cruz Sobrado, V., & Matías Prieto, J. (2023). Nutritional composition of quinoa leafy greens: An underutilized plant-based food with the potential of contributing to current dietary trends. Food Research International, 113862. https://doi.org/10.1016/j.foodres.2023.113862
  24. Joy Ujiroghene, O., Liu, L., Zhang, S., Lu, J., Zhang, C., Lv, J., Pang, X., & Zhang, M. (2019). Antioxidant capacity of germinated quinoa-based yoghurt and concomitant effect of sprouting on its functional properties. LWT, 116, 108592. https://doi.org/10.1016/j.lwt.2019.108592
  25. Kibar, H., Temel, S., & Yücesan, B. (2021). Kinetic modeling and multivariate analysis on germination parameters of quinoa varieties: Effects of storage temperatures and durations. Journal of Stored Products Research, 94, 101880. https://doi.org/10.1016/j.jspr.2021.101880
  26. Kumari, S., Bhinder, S., Singh, B., & Kaur, A. (2023). Physicochemical properties, non-nutrients and phenolic composition of germinated freeze-dried flours of foxtail millet, proso millet and common buckwheat. Journal of Food Composition and Analysis, 115, 105043. https://doi.org/10.1016/j.jfca.2022.105043
  27. Lalaleo, L., Hidalgo, D., Valle, M., Calero-Cáceres, W., Lamuela-Raventós, R. M., & Becerra-Martínez, E. (2020). Differentiating, evaluating, and classifying three quinoa ecotypes by washing, cooking and germination treatments, using 1H NMR-based metabolomic approach. Food Chemistry, 331, 127351. https://doi.org/10.1016/j.foodchem.2020.127351
  28. Liu, S., Wang, W., Lu, H., Shu, Q., Zhang, Y., & Chen, Q. (2022). New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology, 123, 187-197. https://doi.org/10.1016/j.tifs.2022.02.029
  29. Lopes, C. de O., Barcelos, M. de F. P., Vieira, C. N. de G., de Abreu, W. C., Ferreira, E. B., Pereira, R. C., & de Angelis-Pereira, M. C. (2019). Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. Journal of Food Science and Technology, 56(1), 40-48. https://doi.org/10.1007/s13197-018-3436-z
  30. Maleki, S., Razavi, S. H., & Yadav, H. (2023). Diabetes and seeds: New horizon to promote human nutrition and anti-diabetics compounds in grains by germination. Critical Reviews in Food Science and Nutrition, 63(27), 8457-8477. https://doi.org/10.1080/10408398.2022.2063793
  31. Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 302, 47-58. https://doi.org/10.1016/j.ijfoodmicro.2018.08.005
  32. Motta, C., Delgado, I., Matos, A. S., Gonzales, G. B., Torres, D., Santos, M., Chandra-Hioe, M. V., Arcot, J., & Castanheira, I. (2017). Folates in quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum): Influence of cooking and malting. Journal of Food Composition and Analysis, 64, 181-187. https://doi.org/10.1016/j.jfca.2017.09.003
  33. Niu, M., Chen, X., Zhou, W., Guo, Y., Yuan, X., Cui, J., Shen, Z., & Su, N. (2023). Multi-omics analysis provides insights into lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts. Food Research International, 171, 113026. https://doi.org/10.1016/j.foodres.2023.113026
  34. Obaroakpo, J. U., Liu, L., Zhang, S., Jing, L., Liu, L., Pang, X., & Lv, J. (2020). Bioactive assessment of the antioxidative and antidiabetic activities of oleanane triterpenoid isolates of sprouted quinoa yoghurt beverages and their anti-angiogenic effects on HUVECS line. Journal of Functional Foods, 66, 103779. https://doi.org/10.1016/j.jff.2020.103779
  35. Oliveira, M. E. A. S., Coimbra, P. P. S., Galdeano, M. C., Carvalho, C. W. P., & Takeiti, C. Y. (2022). How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends in Food Science & Technology, 122, 13-23. https://doi.org/10.1016/j.tifs.2022.02.015
  36. Pachari Vera, E., Alca, J. J., Rondón Saravia, G., Callejas Campioni, N., & Jachmanián Alpuy, I. (2019). Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. Journal of Cereal Science, 88, 132-137. https://doi.org/10.1016/j.jcs.2019.05.015
  37. Pandya, A., Thiele, B., Zurita-Silva, A., Usadel, B., & Fiorani, F. (2021). Determination and Metabolite Profiling of Mixtures of Triterpenoid Saponins from Seeds of Chilean Quinoa (Chenopodium quinoa) Germplasm. Agronomy, 11(9), Art. 9. https://doi.org/10.3390/agronomy11091867
  38. Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., & Peñas, E. (2018). Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science & Technology, 53(2), 516-524. https://doi.org/10.1111/ijfs.13623
  39. Pilco-Quesada, S., Tian, Y., Yang, B., Repo-Carrasco-Valencia, R., & Suomela, J.-P. (2020). Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science, 94, 102996. https://doi.org/10.1016/j.jcs.2020.102996
  40. Prasad, P., & Sahu, J. K. (2023). Effect of soaking and germination on grain matrix and glycaemic potential: A comparative study on white quinoa, proso and foxtail millet flours. Food Bioscience, 56, 103105. https://doi.org/10.1016/j.fbio.2023.103105
  41. Ren, G., Teng, C., Fan, X., Guo, S., Zhao, G., Zhang, L., Liang, Z., & Qin, P. (2023). Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 410, 135290. https://doi.org/10.1016/j.foodchem.2022.135290
  42. Romano, A., & Ferranti, P. (2023). 2.10 - Pseudocereals: Quinoa (Chenopodium quinoa Willd.). En P. Ferranti (Ed.), Sustainable Food Science—A Comprehensive Approach (pp. 141-149). Elsevier. https://doi.org/10.1016/B978-0-12-823960-5.00004-4
  43. Sánchez-García, J., Muñoz-Pina, S., García-Hernández, J., Heredia, A., & Andrés, A. (2023). Fermented quinoa flour: Implications of fungal solid-state bioprocessing and drying on nutritional and antioxidant properties. LWT, 182, 114885. https://doi.org/10.1016/j.lwt.2023.114885
  44. Sánchez-García, J., Muñoz-Pina, S., García-Hernández, J., Heredia, A., & Andrés, A. (2024). Volatile profile of quinoa and lentil flour under fungal fermentation and drying. Food Chemistry, 430, 137082. https://doi.org/10.1016/j.foodchem.2023.137082
  45. Seal, C. J., Courtin, C. M., Venema, K., & de Vries, J. (2021). Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2742-2768. https://doi.org/10.1111/1541-4337.12728
  46. Serra, D., Almeida, L. M., & Dinis, T. C. P. (2018). Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends in Food Science & Technology, 78, 224-233. https://doi.org/10.1016/j.tifs.2018.06.007
  47. Song, J., & Peng, J. (2023). Qualitative and Quantitative Analysis of Characteristic Sugars in Three Colored Quinoas Based on Untargeted and Targeted Metabolomics (SSRN Scholarly Paper 4585909). https://doi.org/10.2139/ssrn.4585909
  48. Stikić, R. I., Milinčić, D. D., Kostić, A. Ž., Jovanović, Z. B., Gašić, U. M., Tešić, Ž. Lj., Djordjević, N. Z., Savić, S. K., Czekus, B. G., & Pešić, M. B. (2020). Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 97(3), 626-633. https://doi.org/10.1002/cche.10278
  49. Suárez-Estrella, D., Cardone, G., Buratti, S., Pagani, M. A., & Marti, A. (2020). Sprouting as a pre-processing for producing quinoa-enriched bread. Journal of Cereal Science, 96, 103111. https://doi.org/10.1016/j.jcs.2020.103111
  50. Tang, Y., Li, X., Chen, P. X., Zhang, B., Liu, R., Hernandez, M., Draves, J., Marcone, M. F., & Tsao, R. (2016). Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. Journal of Agricultural and Food Chemistry, 64(5), 1103-1110. https://doi.org/10.1021/acs.jafc.5b05414
  51. Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q. U., Jan, S., Singh, T. P., & Dhaliwal, H. S. (2021). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4, 917-925. https://doi.org/10.1016/j.crfs.2021.11.019
  52. Urrútia, G., & Bonfill, X. (2010). [PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses]. Medicina Clinica, 135(11), 507-511. https://doi.org/10.1016/j.medcli.2010.01.015
  53. Venlet, N. V., Hettinga, K. A., Schebesta, H., & Bernaz, N. (2021). Perspective: A Legal and Nutritional Perspective on the Introduction of Quinoa-Based Infant and Follow-on Formula in the EU. Advances in Nutrition, 12(4), 1100-1107. https://doi.org/10.1093/advances/nmab041
  54. Vicente-Sánchez, M. L., Castro-Alija, M. J., Jiménez, J. M., María, L.-V., María Jose, C., Pastor, R., & Albertos, I. (2023). Influence of salinity, germination, malting and fermentation on quinoa nutritional and bioactive profile. Critical Reviews in Food Science and Nutrition, 0(0), 1-16. https://doi.org/10.1080/10408398.2023.2188948
  55. Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6. https://doi.org/10.1016/j.cofs.2016.11.007
  56. Wang, T.-Y., Tao, S.-Y., Wu, Y.-X., An, T., Lv, B.-H., Liu, J.-X., Liu, Y.-T., & Jiang, G.-J. (2022). Quinoa Reduces High-Fat Diet-Induced Obesity in Mice via Potential Microbiota-Gut-Brain-Liver Interaction Mechanisms. Microbiology Spectrum, 10(3), e00329-22. https://doi.org/10.1128/spectrum.00329-22
  57. Wu, Q., Bai, X., Wu, X., Xiang, D., Wan, Y., Luo, Y., Shi, X., Li, Q., Zhao, J., Qin, P., Yang, X., & Zhao, G. (2020). Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa. Plant Physiology and Biochemistry, 151, 443-456. https://doi.org/10.1016/j.plaphy.2020.03.050
  58. Xing, B., Teng, C., Sun, M., Zhang, Q., Zhou, B., Cui, H., Ren, G., Yang, X., & Qin, P. (2021). Effect of germination treatment on the structural and physicochemical properties of quinoa starch. Food Hydrocolloids, 115, 106604. https://doi.org/10.1016/j.foodhyd.2021.106604
  59. Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry, 295, 579-587. https://doi.org/10.1016/j.foodchem.2019.05.167
  60. Yañez-Yazlle, M. F., Romano-Armada, N., Acreche, M. M., Rajal, V. B., & Irazusta, V. P. (2021). Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. Ecotoxicology and Environmental Safety, 218, 112273. https://doi.org/10.1016/j.ecoenv.2021.112273
  61. Zhang, Y., Ma, Z., Cao, H., Huang, K., & Guan, X. (2022). Effect of germinating quinoa flour on wheat noodle quality and changes in blood glucose. Food Bioscience, 48, 101809. https://doi.org/10.1016/j.fbio.2022.101809
  62. Zhu, F. (2023). 12—Quinoa-based food product development. En F. Zhu (Ed.), Quinoa (pp. 317-376). Academic Press. https://doi.org/10.1016/B978-0-323-99909-0.00010-6