Efectos de antibióticos en la biomasa, cobertura de área y clorofila de Lemna gibba y Azolla filiculoides
Publicado 2023-11-04
Palabras clave
- área, clorofila, cobertura de área, fitorremediación, toxicidad
Derechos de autor 2023 Ingrid Maldonado Jimenez, Jesús Miranda-Mamani, Yesica M. Mamani Arpasi
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
Las concentraciones de residuos de antibióticos en los ecosistemas acuáticos están experimentando un incremento progresivo, lo que está ejerciendo impactos significativos en las especies residentes. Las especies Lemna gibba y Azolla fifliculoides son ampliamente conocidas en estudios de toxicidad, y fitorremediación. Además, se ha observado que estas especies presentan respuestas interesantes frente a la exposición a compuestos antibióticos. En este estudio se evaluó los efectos de azitromicina, ciprofloxacina, amoxicilina, cefalexina, ampicilina y clindamicina (0.00, 2.5, 5, 7.5 mg/L) en la biomasa, Ratio de Crecimeinto Relativo (RCR), porcentaje de área y clorofila, durante 7 días. Se recolectaron datos de biomasa para calcular el RCR, y se realizaron capturas de imágenes diarias de cada unidad experimental para estimar el porcentaje de cobertura y las bandas RGB, con el propósito de calcular los niveles de clorofila. Los resultados revelaron efectos de toxicidad de las concentraciones en relación al grupo control, observándose una mayor susceptibilidad en Azolla que en Lemna. Y en relación al porcentaje del área de cobertura, influenciaron los días de experimentación en Azolla (p-valor = <2e-16); mientras que en Lemna, influenciaron negativamente tanto la concentración de antibióticos como los días, p-valor = 0.00161 y 2.1e-11 respectivamente. En cuanto a los niveles de clorofila, no se detectaron alteraciones significativas frente a las concentraciones evaluadas. Estos hallazgos evidencian que, a pesar de los efectos adversos de los antibióticos, las especies investigadas aún demuestran capacidad de supervivencia y capacidad de eliminación de los antibióticos.
Referencias
- Ali, M. M., Al-ani, A., Eamus, D., & Tan, D. K. Y. (2012). A New Image Processing Based Technique to Determine Chlorophyll in Plants. American-Eurasian J. Agric. & Environ. Sci., 12(10), 1323-1328. https://doi.org/10.5829/idosi.aejaes.2012.12.10.1917
- Baciak, M., Sikorski, Ł., Piotrowicz-Cieślak, A. I., & Adomas, B. (2016). Content of biogenic amines in Lemna minor (common duckweed) growing in medium contaminated with tetracycline. Aquatic Toxicology, 180, 95-102. https://doi.org/10.1016/j.aquatox.2016.09.007
- Bianchi, E., Biancalani, A., Berardi, C., Antal, A., Fibbi, D., Coppi, A., Lastrucci, L., Bussotti, N., Colzi, I., Renai, L., Scordo, C., Del Bubba, M., & Gonnelli, C. (2020). Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Science of the Total Environment, 746, 141219. https://doi.org/10.1016/j.scitotenv.2020.141219
- Brain, R. A., Johnson, D. J., Richards, S. M., Hanson, M. L., Sanderson, H., Lam, M. W., Young, C., Mabury, S. A., Sibley, P. K., & Solomon, K. R. (2004). Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquatic Toxicology, 70(1), 23-40. https://doi.org/10.1016/j.aquatox.2004.06.011
- Brain, R. A., Johnson, D. J., Richards, S. M., Sanderson, H., Sibley, P. K., & Solomon, K. R. (2004). Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environmental Toxicology and Chemistry, 23(2), 371-382. https://doi.org/10.1897/02-576
- Carrapico, F. (2014). Azolla as a Superorganism . Its Implication in Symbiotic Studies. En Symbioses and Stress: Joint Ventures in Biology (pp. 225-241). Springer. https://doi.org/10.1007/978-90-481-9449-0
- Costa, C. S., Tetila, E. C., Astolfi, G., Sant’Ana, D. A., Brito Pache, M. C., Gonçalves, A. B., Garcia Zanoni, V. A., Picoli Nucci, H. H., Diemer, O., & Pistori, H. (2019). A computer vision system for oocyte counting using images captured by smartphone. Aquacultural Engineering, 87(September). https://doi.org/10.1016/j.aquaeng.2019.102017
- Drobniewska, A., Wójcik, D., Kapłan, M., Adomas, B., Piotrowicz-Cieślak, A., & Nałęcz-Jawecki, G. (2017). Recovery of Lemna minor after exposure to sulfadimethoxine irradiated and non-irradiated in a solar simulator. Environmental Science and Pollution Research, 24(36), 27642-27652. https://doi.org/10.1007/s11356-016-7174-3
- Forni, C., Cascone, A., Fiori, M., & Migliore, L. (2002). Sulphadimethoxine and Azolla filiculoides Lam.: A model for drug remediation. Water Research, 36(13), 3398-3403. https://doi.org/10.1016/S0043-1354(02)00015-5
- Garcia-Rodríguez, A., Matamoros, V., Fontàs, C., & Salvadó, V. (2015). The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. International Journal of Environmental Science and Technology, 12(7), 2327-2338. https://doi.org/10.1007/s13762-014-0632-x
- Gomes, M. P., de Brito, J. C. M., Carvalho Carneiro, M. M. L., Ribeiro da Cunha, M. R., Garcia, Q. S., & Figueredo, C. C. (2018). Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization. Environmental Pollution, 232, 293-299. https://doi.org/10.1016/j.envpol.2017.09.054
- Gomes, M. P., Gonçalves, C. A., de Brito, J. C. M., Souza, A. M., da Silva Cruz, F. V., Bicalho, E. M., Figueredo, C. C., & Garcia, Q. S. (2017). Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability. Journal of Hazardous Materials, 328, 140-149. https://doi.org/10.1016/j.jhazmat.2017.01.005
- Grenni, P., Patrolecco, L., Rauseo, J., Spataro, F., Di Lenola, M., Aimola, G., Zacchini, M., Pietrini, F., Di Baccio, D., Stanton, I. C., Gaze, W. H., & Barra Caracciolo, A. (2019). Sulfamethoxazole persistence in a river water ecosystem and its effects on the natural microbial community and Lemna minor plant. Microchemical Journal, 149, 103999. https://doi.org/10.1016/j.microc.2019.103999
- Hájková, M., Kummerová, M., Zezulka, Š., Babula, P., & Váczi, P. (2019). Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts. Chemosphere, 224, 892-899. https://doi.org/10.1016/j.chemosphere.2019.02.197
- Hattink, J., & Wolterbeek, H. T. (2001). Accumulation of 99Tc in duckweed Lemna minor L. as a function of growth rate and 99Tc concentration. Journal of Environmental Radioactivity, 57(2), 117-138. https://doi.org/10.1016/S0265-931X(01)00015-7
- Hu, H., Zhou, Q., Li, X., Lou, W., Du, C., Teng, Q., Zhang, D., Liu, H., Zhong, Y., & Yang, C. (2019). Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology, 291, 121853. https://doi.org/10.1016/j.biortech.2019.121853
- Iatrou, E., Gatidou, G., Damalas, D., Thomaidis, N., & Stasinakis, A. (2017). Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems. Journal of Hazardous Materials, 330, 116-126. https://doi.org/10.1016/j.jhazmat.2017.02.005
- Kadir, A. A., Abdullah, S. R. S., Othman, B. A., Hasan, H. A., Othman, A. R., Imron, M. F., Ismail, N. ‘Izzati, & Kurniawan, S. B. (2020). Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock. Chemosphere, 259, 1-13. https://doi.org/10.1016/j.chemosphere.2020.127468
- Kummerová, M., Zezulka, Š., Babula, P., & Tříska, J. (2016). Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. Journal of Hazardous Materials, 302, 351-361. https://doi.org/10.1016/j.jhazmat.2015.09.057
- Li, D., Li, C., Yao, Y., Li, M., & Liu, L. (2020). Modern imaging techniques in plant nutrition analysis: A review. Computers and Electronics in Agriculture, 174, 1-14. https://doi.org/10.1016/j.compag.2020.105459
- Lu, X. M., & Lu, P. Z. (2019). Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. Science of the Total Environment, 692, 422-431. https://doi.org/10.1016/j.scitotenv.2019.07.285
- Medina, W., Skurtys, O., & Aguilera, J. M. (2010). Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT - Food Science and Technology, 43(2), 238-246. https://doi.org/10.1016/j.lwt.2009.07.010
- Minervini, M., Fischbach, A., Scharr, H., & Tsaftaris, S. A. (2016). Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, 81, 80-89. https://doi.org/10.1016/j.patrec.2015.10.013
- Nunes, B., Pinto, G., Martins, L., Gonçalves, F., & Antunes, S. C. (2014). Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba. Environmental Science and Pollution Research, 1-8. https://doi.org/10.1007/s11356-014-3059-5
- Pomati, F., Netting, A. G., Calamari, D., & Neilan, B. A. (2004). Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology, 67(4), 387-396. https://doi.org/10.1016/j.aquatox.2004.02.001
- Pro, J., Ortiz, J. A., Boleas, S., Fernández, C., Carbonell, G., & Tarazona, J. V. (2003). Effect assessment of antimicrobial pharmaceuticals on the aquatic plant Lemna minor. Bulletin of Environmental Contamination and Toxicology, 70(2), 290-295. https://doi.org/10.1007/s00128-002-0208-1
- Riccardi, M., Mele, G., Pulvento, C., Lavini, A., D’Andria, R., & Jacobsen, S. E. (2014). Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research, 120(3), 263-272. https://doi.org/10.1007/s11120-014-9970-2
- Singh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492-502. https://doi.org/10.1016/j.chemosphere.2018.03.010
- Sree, K. S., Keresztes, Á., Mueller-Roeber, B., Brandt, R., Eberius, M., Fischer, W., & Appenroth, K. J. (2015). Phytotoxicity of cobalt ions on the duckweed Lemna minor – Morphology, ion uptake, and starch accumulation. Chemosphere, 131, 149-156. https://doi.org/10.1016/j.chemosphere.2015.03.008
- Taghi ganji, M., Khosravi, M., & Rakhshaee, R. (2005). Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. International Journal of Environmental Science & Technology, 1(4), 265-271. https://doi.org/10.1007/bf03325841
- Vannini, A., Paoli, L., Vichi, M., Bačkor, M., Bačkorová, M., & Loppi, S. (2018). Toxicity of Diclofenac in the Fern Azolla filiculoides and the Lichen Xanthoria parietina. Bulletin of Environmental Contamination and Toxicology, 100(3), 430-437. https://doi.org/10.1007/s00128-017-2266-4
- Zhu, W., Sun, Z., Yang, T., Li, J., Peng, J., & Zhu, K. (2020). Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales. Computers and Electronics in agriculture, 178, 1-16. https://doi.org/10.1016/j.compag.2020.105786