Vol. 21 No. 2 (2019)
Review article

Maca (Lepidium meyenii Walpers) Andean functional food: bioactive, biochemical and biological activity

Emilio Yábar Villanueva
Universidad Nacional del Centro del Perú, Huancayo
Vilma Reyes De La Cruz
Universidad Nacional del Centro del Perú, Huancayo

Published 2019-04-30

Keywords

  • Lepidium meyenii,
  • Lepidium peruvianum,
  • andean products,
  • biosynthesis,
  • degradation,
  • health
  • ...More
    Less

How to Cite

Yábar Villanueva, E., & Reyes De La Cruz, V. (2019). Maca (Lepidium meyenii Walpers) Andean functional food: bioactive, biochemical and biological activity. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(2), 139-152. https://doi.org/10.18271/ria.2019.457

Abstract

Maca is nutritious, energetic and functional food. As a defense mechanism, its secondary metabolites react to biotic and abiotic stress, during pre-harvest, harvest and traditional post-harvest drying. The aim of this review is to evaluate and provide relevant scientific information about bioactives, biochemistry and biological activity of the maca (Lepidium meyenii Walpers or Lepidium peruvianum Chacón) related to health and reassess its functional food condition. A search of four electronic databases and information required from the authors was used for this review. There is a lack of in vivo and clinical research with more representative sample sizes and more consistent methodologies. Therefore, glucosinolates, phenolic compounds, phytosterols, macaenes, macamides, macahidantoins, meyeniins, alkaloids and others formed during the productive cycle of maca act synergistically to prevent chronic diseases when consumed as part of a varied diet (functional), very common in our food culture and not as isolated bioactive compounds (nutraceutical) from the biological context as pretended by the pharmaceutical industry.

References

  1. Aliaga, R., Espinoza, E., Rodríguez, G., Villagómez, V., Janampa, M., Bazán.,… Llanos, N. (2011). La cadena de valor de la maca en la Meseta del Bombón. Análisis y lineamientos estratégicos para su desarrollo. Recuperado de http://bibliotecavirtual.minam.gob.pe /biam/bitstream/handle/minam/1432/BIV01208.pdf.
  2. Balasundram, N., Sundram, K. & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  3. Beharry, S. & Heinrich, M. (2018). Is the hype around the reproductive health claims of maca (Lepidium meyenii Walp.) justified? Journal of Ethnopharmacology, 211, 126–170. https://doi.org/10.1016/j.jep.2017.08.003
  4. Blomhoff, R. (2005). Dietary antioxidants and cardiovascular disease. Current Opinion in Lipidology, 16(1), 47-54.
  5. Blomhoff, R., Carlsen, M.H., Andersen, L.F. & Jacobs, D.R. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96, (Suppl. 2), S52-S60. https://doi.org/10.1017/BJN20061864
  6. Boutté, Y. & Grebe, M. (2009). Cellular processes relying on sterol function in plants. Current Opinion in Plant Biology, 12(6), 705-713. https://doi.org/10.1016/j.pbi.2009.09.013
  7. Carocho, M. & Ferreira, I.C.F.R. (2013). The role of phenolic compounds in the fight against cancer – a review. Anticancer Agents in Medicinal Chemistry, 13(8), 1236-1258.
  8. Cartea, M.E., Francisco, M., Soengas, P. & Velasco, P. (2011). Phenolic Compounds in Brassica Vegetables (review). Molecules, 16(1), 251-280. https://doi.org/10.3390/ molecules16010251
  9. Chain, F.E., Grau, A., Martins, J.C. & Catalán, C.A.N. (2014). Macamides from wild ‘Maca’, Lepidium meyenii Walpers (Brassicaceae). Phytochemistry Letters, 8, 145-148. https://doi.org/10.1016/j.phytol.2014.03.005
  10. Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V. & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1-20. https://doi.org/10.1016/j.plaphy.2013.05.009
  11. Clément, C., Diaz, D.A., Avula, B., Khan, I.A., Mayer, A.C., Ponce-Aguirre, D.D., … Kreuzer M. (2009). Influence of colour type and previous cultivation on secondary metabolites in hypocotyls and leaves of maca (Lepidium meyenii Walpers). Journal of the Science of Food and Agriculture, 90(5), 861-869. https://doi.org/10.1002/jsfa.3896
  12. Clément, C., Diaz, D.A., Manrique, I., Avula, B., Khan, I.A., Ponce-Aguirre, D.D., … Kreuzer, M. (2010). Secondary metabolites in maca as affected by hypocotyl colour, cultivation history, and site. Agronomy Journal, 102(2), 431-439. doi:10.2134/agronj2009.0315
  13. Comisión de Promoción del Perú para la Exportación y el Turismo (PROMPERÚ) (2017). Exportación del producto maca según sus principales mercados en kg 2012-2017. Recuperado de http://www.siicex.gob.pe/siicex/apb/Reporte Producto.aspx?psector= 1025&preporte=prodmercvolu&pvalor=1934.
  14. Conferencia de las Naciones Unidas sobre Comercio y Desarrollo (UNCTAD) (2007:4). Iniciativa Biotrade. Principios y criterios de biocomercio. Naciones Unidas. Nueva York/ Ginebra. Recuperado de http://unctad.org/es/Docs/ ditcted20074_sp.pdf.
  15. Cui, B., Zheng, B.L., He, K., y Zheng, Q.Y. (2003). Imidazole Alkaloids from Lepidium meyenii. Journal of Natural Products, 66 (8), 1101-1103. DOI: 10.1021/np030031i
  16. Das, L., Bhaumik, E., Raychaudhuri, U. & Chakraborty, R. (2012). Role of nutraceuticals in human health. Journal of Food Science and Technology, 49(2), 173–183. https://doi.org/10.1007/s13197-011-0269-4
  17. De Pascale, S., Maggio, A., Pernice, R., Fogliano, V. & Barbieri, G. (2007). Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. Sylvestris. European Journal of Agronomy, 26(4), 418-424. https://doi.org/10.1016/j.eja.2006.12.009
  18. Del Valle, J., Pumarola, T., Alzamora, L. & Del Valle, L.J. (2014). Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pacific Journal of Tropical Medicine, 7(Suppl 1), S415-S420. https://doi.org/10.1016/S1995-7645(14)60268-6
  19. Dini, A., Migliuolo, G., Rastrelli, L., Saturnino, P. & Schettino, O. (1994). Chemical composition of Lepidium meyenii. Food Chemistry, 49(4), 347-349. https://doi.org/ 10.1016/0308-8146(94)90003-5
  20. Dinkova-Kostova, A.T. & Kostov, R.V. (2012). Glucosinolates and isothiocyanates in health and disease (review). Trends in Molecular Medicine, 18(6), 337-347. https://doi.org/ 10.1016/j.molmed.2012.04.003
  21. Esparza, E., Hadzich, A., Kofer, W., Mithöfer, A. & Cosio, E.G. (2015). Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry, 116, 138-148. https://doi.org/10.1016/j.phytochem. 2015.02.030
  22. Fahey, J.W., Zalcmann, A.T. & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  23. Gasco, M., Villegas, L., Yucra, S., Rubio, J. & Gonzales, G.F. (2007). Dose-response effect of red maca (Lepidium meyenii) on benign prostatic hyperplasia induced by testosterone enanthate. Phytomedicine, 14(7-8), 460-464. https://doi.org/10.1016/j.phymed. 2006.12.003
  24. Gonzales, C., Rubio, J., Gasco, M., Nieto, J., Yucra, S. & Gonzales, G.F. (2006). Effect of short-term and long-term treatments with three ecotypes of Lepidium meyenii (maca) on spermatogenesis in rats. Journal of Ethnopharmacology, 103(3), 448-454. https://doi.org/ 10.1016/j.jep.2005.08.035
  25. Gonzales, G.F. (2012). Ethnobiology and ethnopharmacology of Lepidium meyenii (Maca), a plant from the Peruvian highlands: review. Evidence-Based Complementary and Alternative Medicine, Article ID 193496, 1-10. http://dx.doi.org/10.1155/2012/193496
  26. Gonzales, G.F., Cordova, A., Gonzales, C., Chung, A., Vega, K. & Villena, A. (2001). Lepidium meyenii (maca) improved semen parameters in adult men. Asian Journal of Andrology, 3(4), 301-303. http://dx.doi.org/10.1155/2015/324369
  27. Gonzales, G.F., Gasco, M., Córdava, A., Chung, A., Rubio, J. & Villegas, L. (2004). Effect of Lepidium meyenii (maca) on spermatogenesis in male rats acutely exposed to high altitude (4340 m). Journal of Endocrinology, 180(1), 87-95. https://doi.org/ 10.1677/joe.0.1800087
  28. Gonzales, G.F., Miranda, S., Nieto, J., Fernández, G., Yucra, S., Rubio, J.,…Gasco, M. (2005). Red maca (Lepidium meyenii) reduced prostate size in rats. Reproductive Biology and Endocrinology, 3 (5), 1-16. https://doi.org/10.1186/1477-7827-3-5
  29. Gonzales, G.F., Ruiz, A., Gonzales, C., Villegas, L. & Córdova, A. (2001). Effect of Lepidium meyenii (maca) roots on spermatogenesis of male rats. Asian Journal of Andrology, 3(3), 231-233.
  30. Gonzales, G.F., Villaorduña, L., Gasco, M., Rubio, J. & Gonzales, C. (2014). Maca (lepidium meyenii Walp), una revisión sobre sus propiedades biológicas. Revista Peruana de Medicina Experimental y Salud Pública, 31(1), 100-110. http://dx.doi.org/10.17843/ rpmesp.2014.311.15
  31. Gugnani, K.S., Vu, N., Rondón-Ortiz, A.N., Böhlkea, M., Maher, T.J. & Pino-Figueroa, A.J. (2018). Neuroprotective activity of macamides on manganese-induced mitochondrial disruption in U-87 MG glioblastoma cells. Toxicology and Applied Pharmacology, 340, 67-76. https://doi.org/10.1016/j.taap.2017.12.014
  32. Gutiérrez-Grijalva, E.P., Ambriz-Pére, D.L., Leyva-López, N., Castillo-López, R.I. & Heredia, J.B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutrición, 66(2), 87-100.
  33. Halkier, B.A. & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57, 303-333. https://doi.org/10.1146/annurev.arplant.57.032905. 105228
  34. Jin, W., Chen, X., Dai, P. & Yu, L. (2016). Lepidiline C and D: Two new imidazole alkaloids from Lepidium meyenii Walpers (Brassicaceae) roots. Phytochemistry Letters, 17, 158-161. https://doi.org/10.1016/j.phytol.2016.07.001
  35. Korkmaz, S. (2018). Antioxidants in maca (Lepidium meyenii) as a supplement in nutrition. In E. Shalaby (Ed.), Antioxidants in Foods and Its Applications (pp.138-154). IntechOpen Limited. http://dx.doi.org/10.5772/intechopen.75582
  36. Kritchevsky, D. & Chen, S.C. (2005). Phytosterols-health benefits and potential concerns: a review. Nutrition Research, 25(5), 413-428. https://doi.org/10.1016/j.nutres.2005.02.003
  37. Lee, K.J., Dabrowski, K., Sandoval, M. & Miller, M.J.S. (2005). Activity-guided fractionation of phytochemicals of maca meal, their anti-oxidant activities and effects on growth, feed utilization and survival in rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture, 244(1-4), 293-301. https://doi.org/10.1016/j.aquaculture.2004.12.006
  38. Lee, M. S., Kim, T. H. & Lee, H. W. (2017). 10 - The Use of Maca (Lepidium meyenii) for Health Care: An Overview of Systematic Reviews. Sustained Energy for Enhanced Human Functions and Activity, 167-172. https://doi.org/10.1016/B978-0-12-805413-0.00010-7
  39. Li, G., Ammermann, U. & Quirós, C.F. (2001). Glucosinolate contents in maca (Lepidium peruvianum Chacón) seeds, sprouts, mature plants and several derived commercial products. Economic Botany, 55(2), 255-262. DOI: 10.1007/BF02864563
  40. López-Nicolás, J.M. & García-Carmona, F. (2010). “Enzymatic and Nonenzymatic Degradation of Polyphenols”, 101-129. En L.A. De la Rosa; E. Álvarez-Parrilla; G.A. González-Aguilar (Eds). Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability (101-129). Blackwell Publishing lowa, USA. https://doi.org/ 10.1002/9780813809397.ch4
  41. Martirosyan, D. M. & Singh, J. (2015). A new definition of functional food by Functional Food Center: what makes a new definition unique? Functional Foods in Health and Disease, 5(6), 209-223. DOI: 10.31989/ffhd.v5i6.183
  42. McCollom, M.M., Villinski, J.R., McPhail, K.L., Craker, L.E. & Gafner, S. (2005). Analysis of macamides in samples of Maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochemical Analysis, 16(6), 463-469. https://doi.org/10.1002/pca.871
  43. Moreau, R.A., Whitaker, B.D. & Hicks, K.B. (2002). Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses (review). Progress in Lipid Research, 41(6), 457-500. https://doi.org/10.1016/S0163-7827(02)00006-1
  44. Muhammad, I., Zhao, J., Dunbar, D.C. & Khan, I.A. (2002). Constituents of Lepidium meyenii 'maca'. Phytochemistry, 59(1), 105–110. https://doi.org/10.1016/S0031-9422(01)00395-8
  45. Nguyen, H.T.M., Neelakadan, A.K., Quach, T.N. Valliyodan, B., Kumar, R. Zhang, Z., Nguyen, H.T. (2013). Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis. Plant Physiology and Biochemistry, 73, 23-32. https://doi.org/10.1016/j.plaphy.2013.07.018
  46. O’Callaghan, Y., McCarthy, F.O. & O’Brien, N.M. (2014). Recent advances in phytosterol oxidation products (review). Biochemical and Biophysical Research Communications, 446(3), 786-791. https://doi.org/10.1016/j.bbrc.2014.01.148
  47. Otaegui-Arrazola, A., Menéndez-Carreño, M., Ansorena, D. & Astiasarán, I. (2010). Oxysterols: A world to explore (review). Food and Chemical Toxicology, 48(12), 3289-3303. https://doi.org/10.1016/j.fct.2010.09.023
  48. Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L. & Delikanli, B. (2014). Phenolics in Human Health. International Journal of Chemical Engineering and Applications, 5(5), 393-396. DOI: 10.7763/IJCEA.2014.V5.416
  49. Pandey, K.B. & Rizvi S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease (review). Oxidative Medicine and Cellular Longevity, 2(5), 270-278. http://dx.doi.org/10.4161/oxim.2.5.9498
  50. Qiu, C., Zhu, T., Lan, L., Zeng, Q. & Du, Z. (2016). Analysis of Maceaene and Macamide Contents of Petroleum Ether Extract of Black, Yellow, and Purple Lepidium Meyenii (Maca) and Their Antioxidant Effect on Diabetes Mellitus Rat Model. Brazilian Archives of Biology and Technology, 59, e16150462, 1-9. http://dx.doi.org/10.1590/1678-4324-2016150462
  51. Rubio, J., Dang, H., Gong, M., Liu, X., Chen, S. L. & Gonzales, G.F. (2007). Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food and Chemical Toxicology, 45(10), 1882-1890. https://doi.org/10.1016/j.fct.2007.04.002
  52. Sandoval, M., Okuhama, N.N., Angeles, F.M., Melchor, V.V., Condezo, L.A. Lao, J. & Miller, M.J.S. (2002). Antioxidant activity of the cruciferous vegetable maca (Lepidium meyenii). Food Chemistry, 79(2), 207-213. https://doi.org/10.1016/S0308-8146(02)00133-4
  53. Santos, H.O., Howell, S. & Teixeira, F.J. (2019). Beyond tribulus (Tribulus terrestris L.): The effects of phytotherapics on testosterone, sperm and prostate parameters: review. Journal of Ethnopharmacology, 235, 392–405. https://doi.org/10.1016/j.jep.2019.02.033
  54. Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants (review). Plant Physiology and Biochemistry, 42(6), 465-476. DOI: 10.1016/j.plaphy.2004.05.012
  55. Sønderby, I.E., Geu-Flores, F. & Halkier B.A. (2010). Biosynthesis of glucosinolates-gene discovery and beyond (review). Trends in Plant Science, 15(5), 283-290. DOI: 10.1016/j.tplants.2010.02.005
  56. Tiwari, U. & Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Research International, 50(2), 497-506. https://doi.org/10.1016/j.foodres.2011.09.007
  57. Valentová, K., Buckiová, D., Křen, V., Pěknicová, J., Ulrichová, J. & Šimánek, V. (2006). The in vitro biological activity of Lepidium meyenii extracts. Cell Biology and Toxicology, 22(2), 91-99. DOI: 10.1007/s10565-006-0033-0
  58. Wang, S. & Zhu, F. (2019). Chemical composition and health effects of maca (Lepidium meyenii). Food Chemistry, 288, 422-443. https://doi.org/10.1016/j.foodchem.2019.02. 071
  59. Wang, Y., Wang, Y., McNeil, B. & Harvey, L.M. (2007). Maca: An Andean crop with multi-pharmacological functions: review. Food Research International, 40(7), 783-792. https://doi.org/10.1016/j.foodres.2007.02.005
  60. Weingärtner, O., Baber, R. & Teupser, D. (2014). Plant sterols in food: No consensus in guidelines (review). Biochemical and Biophysical Research Communications, 446(3), 811-813. https://doi.org/10.1016/j.bbrc.2014.01.147
  61. Yábar, E., Pedreschi, R., Chirinos, R. & Campos, D. (2011). Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chemistry, 127(4), 1576-1583. https://doi.org/10.1016/j.foodchem.2011.02.021
  62. Yábar, E.F. (2017). Evolución de glucosinolatos, compuestos fenólicos y β-sitosterol en tres ecotipos de maca (Lepidium meyenii Walp.) durante la pre y post-cosecha (tesis doctorado). Universidad Nacional Agraria - La Molina, Lima, Perú. http://repositorio.lamolina.edu.pe/handle/UNALM/3128
  63. Zapana, J. G., Mamani, M., Escobar-Mamani, F., & Zapana, J. C. (2017). Producción de raíz tuberosa en cultivo de “mauka” (Mirabilis expansa [Ruiz y Pavón] Standley) con aplicación de abonamiento orgánico y fertilización química en Puno - Perú. Journal of High Andean Research, 19(3), 275–284. https://doi.org/dx.doi.org/10.18271/ria.2017.292
  64. Zhang, J., Tian, Y., Yan, L., Zhang, G., Wang, X., Zeng, Y., et al. (2016). Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high–altitude adaptation in the central Andes. Molecular Plant, 9(7), 1066-1077. https://doi.org/10.1016/j.molp.2016.04.016
  65. Zhao, J., Muhammad, I., Dunbar, D.C., Mustafa, J. & Khan, I.A. (2005). New Alkamides from Maca (Lepidium meyenii). Journal of Agricultural and Food Chemistry, 53(3), 690-693. DOI: 10.1021/jf048529t
  66. Zhou, M., Zhang, R., Chen, Y., Liao, L., Sun, Y., Ma, Z.,… Hu, Q. (2018). Three new pyrrole alkaloids from the roots of Lepidium meyenii. Phytochemistry Letters, 23, 137-140. https://doi.org/10.1016/j.phytol.2017.12.002
  67. Zhou, X., Seto, S.W., Chang, D., Kiat, H., Razmovski-Naumovski, V., Chan, K. & Bensoussan, A. (2016). Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research (review). Frontiers in Pharmacology, 7, 201, 1-16. https://doi.org/10.3389/fphar.2016.00201