Vol. 19 No. 2 (2017)
Case report

Regionaliatión of Monthly Flows of the Titicaca Hydrographic Region, Perú

Apolinario Lujano Laura
National University of the Altiplano Puno Peru
José Pitágoras Quispe Aragón
National University of the Altiplano Puno Peru
Efraín Lujano Laura
National University of the Altiplano Puno Peru

Published 2017-06-26

Keywords

  • Ward Method,
  • L-moments,
  • regionalization,
  • potential regression

How to Cite

Lujano Laura, A. ., Quispe Aragón, J. P. ., & Lujano Laura, E. . (2017). Regionaliatión of Monthly Flows of the Titicaca Hydrographic Region, Perú. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 19(2), 219-230. https://doi.org/10.18271/ria.2017.281

Abstract

This research was conducted in the Hydrographic Region Titicaca, Peru. The main objective was to develop regional models of average monthly flows and persistence of the main rivers, applied to the problem of estimation of flows in basins without hydrometric registration. The climatic and physiographic characteristics of the basins under study were taken as independent variables and the mean monthly flows and persistence as a dependent variable. The methodology to identify homogeneous hydrological regions was made through the techniques of Ward and L-Moments. The regional equations were determined using potential regression models, the explanatory variables being the basin area and the length of the main river. The Nash-Sutcliffe (NSE) efficiency indicators and the root mean square error (RMSE) were used to assess the statistical significance of the regional models. The proposed regional equations show a good performance and estimate the observed flows.

 

References

  1. Dalrymple, T. (1960). Flood – Frequency Analyses. Manual of Hydrology: Part 3. Flood-Flow Techniques. Geological Survey Water-Supply Paper 1543-A. United States Government Printing Office, Washington.
  2. Da Silva, J.O.B., De O. Bueno, E., Tucci, C.E.M., & Castro, N.M.R. (2003). Extrapolação Espacial na Regionalização da Vazão. Revista Brasileira de Recursos Hídricos, 8(1), 21-37.
  3. De Andrade, E., Menezes, M., Tavora, R., Meireles, M., & Nieto, J. (2004). Regionalização de modelos de vazões medias de longo periodo para o Estado do Ceará. Revista Ciencia Agronòmica, 35, 139-148.
  4. Euclydes, H.P., Ferreira, P.A., Og Arao, V.R., & Medeiros, D.R. (2001). Regionalização Hidrológica na Bacia do Alto São Francisco a Montante da Barragem de Três Marias, Minas Gerais. Revista Brasileira de Recursos Hídricos, 6(2), 81-105.
  5. Falco, P.F., De Araujo, N.A., Silva, R.F., & Fernandes, D.S.M. (2012). Extrapolacao de equacoes de regionalizacao de vazoes mínimas: Alternativas para atenuar os riscos. Water Resources and Irrigation Management, 1(1), 51-59.
  6. Franchini, M., & Suppo, M. (1996). Regional analysis of flow duration curves for a limestone region, Water Resource Management, 10, 199–218.
  7. Gingras, D., & Adamowski, K. (1993). Homogeneous Region Delineation Bases on Annual Flood Generation Mechanism. Hydrological Sciences Journal, 38(2), 103-121.
  8. Gottschalk, L. (1985). Hydrological regionalization of Sweden. Hydrology Science Journal, 30, 65–83.
  9. Greenwood, J.A., Landwehr, J.M., Matalas, N.C., & Wallis, J.R. (1979). Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 15(5), 1049-1054.
  10. Halcrow, (2011). Atlas del Potencial Hidroeléctrico del Perú. Lima – Perú.
  11. Hall, M.J., & Minns, A.W. (1999). The Classification of Hydrologically Homogeneous Regions. Hydrological Sciences Journal. 44(5), 693-704.
  12. Hosking, J. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Statics. Soc. B. 52, 105-124.
  13. Hosking, J., & Wallis, J. (1997). Regional Frecuency Analysis: An Approach Base on L-Moments. Cambridge University Press, Cambridge, New York, Melbourne, Madris, Cape Town, Singapore, Sao Paulo. 224, 100 – 123.
  14. Jain, A.K., Murty, M.N., & Flynn, P.J. (1999). Data Clustering. A Review. ACM Computing Surveys, 31(3), N° 3.
  15. Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.
  16. Lujano, A., Lujano, E., & Quispe, J.P. (2016). Regionalización de caudales anuales en cuencas del altiplano peruano. Revista de Investigaciones Altoandinas, 18(2), 189-194.
  17. Malekinezhad, H., Nachtnebel, H.P., & Klik, A. (2011). Comparing the index-flood and multiple-regression methods using L-moments. Physics and Chemistry of the Earth, 36, 54-60.
  18. McCuen, R.H., Leahy, R.B., & Johson, P.A. (1990). Problems with Logarith-mic Transformations in Regression. Journal of Hydraulic Engineering, 116(3), 414-428.
  19. Merz, R., & Blöschl, G. (2004). Regionalization of catchment model parameters. Journal of Hydrology, 287, 95-123.
  20. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulation. Transactions of the ASABE, 50(3), 885-900.
  21. Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models, part I: A discussion of principles. Journal of Hydrology, 10(3), 282–290.
  22. Nathan, R.J., & McMahon, T.A. (1990). Identification of homogeneous regions for the purpose of regionalization. Journal of Hydrology, 121, 217-238.
  23. Ourda, T.B.M.J., Bá, K.M., Díaz-Delgado, C., Carsteanu, A., Chokmani, K., Gringas, H., Quentin, E., Trujillo, E., & Bobee, B. (2008). Intercomparison of Regional Flood Frecuency Estimation Methods at Unaguged Sitios for a Mexican Case Study. Journal of Hydrology, 348, 40-58.
  24. Pandey, G.R., & Nguyen, V.T.V. (1999). A comparative study of regression based methods in regional frequency analysis. Journal of Hydrology, 225, 92-101.
  25. Paris, M.C., & Zucarelli, G.V. (2004). Regionalización de caudales. Propuesta metodológica para la identificación de regiones homogéneas. Ingeniería hidráulica en México, 19(4), 5-19.
  26. Rao, A.R., & Srinivas, V.V. (2006). Regionalization of watersheds by hybrid cluster analysis. Journal of Hydrology, 318, 37–56.
  27. Ritter, A., & Muñoz, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45.
  28. Saf, B. (2010). Asseement of the effects of discordant sites on regional flood frecuency analysis. Journal of Hydrology, 380, 363-375.
  29. Sanborn, S.C., & Bledsoe, B. P. (2006). Predicting streamflow regime metrics for ungauged streams in Colorado, Washington, and Oregon. Journal of Hydrology, 325, 241–261
  30. Topaloglu, F. (2000). Estimation of Instantaneous Peak Flows in Seyhan River Basin Using Regional Regression Procedures. Turk J Agric For, 26, 47-55.
  31. Tucci, C. (2002) Regionalização de Vazões. Primera edição. Ed. Universidades/UFRGS, Brasil. 256 pp.
  32. Ward, J.H., (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc, 58, 236–244.
  33. Zhang, J., y Hall, M.J. (2004). Regional flood frequency analysis for the Gan-Ming River basin in China. Journal of Hydrology, 296, 98–117.