Published 2022-02-21
Keywords
- infrared drying, colorimetry, quality, Lessonia trabeculata
How to Cite
Abstract
Fishmeal concentrates a high percentage of protein and its monetary cost is relatively high, searching for possible alternatives in macroalgae for improvement purposes is an option. Color is a fundamental characteristic of food, however, drying by the Infrared method as an emerging technology for the study of the macroalga Lessonia trabeculata is little studied. For this reason, the degradation and change of color in the drying process by infrared rays (IR) at different temperatures 40°C, 55°C and 70°C were objectively characterized with the color space scale (CIE-L*a *b*), through the use of a spectrophotometer. Drying was carried out with infrared rays in an infrared radiant heating chamber with a power of 4.5kW, 20.5 Amps. The results indicate that the best color treatment determined was for the macroalga Lessonia trabeculata at a temperature of 40°C with values for: L*= 44.758±0.227, a*= -1.564 ± 0.016 and b*= 11.050±0.017; obtaining a first order kinetics for logarithmic scale corresponding to the parameters L*.b* as a function of time, likewise an activation energy value of Ea = 24.062 KJ/mol and the Arrhenius constant k0 = 0.0197 min- was reached. one. It is concluded that there is inverse variability between the color of the macroalgae and the temperature applied in the drying process; being the values of the color parameters L*, a*, b* of the macroalga decreases as the temperature increases, thereby leading to color degradation.
References
- Aghajanzadeh, S., Kashaninejad, M., & Ziaiifar, A. M. (2016a). Ciencia innovadora de los alimentos y tecnologías emergentes fisicoquímicas clave del jugo de lima. 38, 139–148.
- Aghajanzadeh, S., Kashaninejad, M., & Ziaiifar, A. M. (2016b). Effect of infrared heating on degradation kinetics of key lime juice physicochemical properties. Innovative Food Science and Emerging Technologies, 38, 139–148. https://doi.org/10.1016/j.ifset.2016.09.027
- Aghajanzadeh, S., Ziaiifar, A. M., Kashaninejad, M., Maghsoudlou, Y., & Esmailzadeh, E. (2016). Thermal inactivation kinetic of pectin methylesterase and cloud stability in sour orange juice. Journal of Food Engineering, 185, 72–77. https://doi.org/10.1016/j.jfoodeng.2016.04.004
- Ahmed, J., Kaur, A., & Shivhare, U. (2002). Color degradation kinetics of spinach, mustard leaves, and mixed puree. Journal of Food Science, 67(3), 1088–1091. https://doi.org/10.1111/j.1365-2621.2002.tb09457.x
- Badui, S. (2006). Química de los Alimentos (4th ed.). Pearson Educación. México.
- Bermejo, R., Macías, M., Sánchez-García, F., Love, R., Varela-Álvarez, E., & Hernández, I. (2020). Influence of irradiance, dissolved nutrients and salinity on the colour and nutritional characteristics of Gracilariopsis longissima (Rhodophyta). Algal Research, 52(November), 102121. https://doi.org/10.1016/j.algal.2020.102121
- Berry, H. M., Lai, F., Kende, A., Rickett, D. V., Baxter, C. J., Enfissi, E. M. A., & Fraser, P. D. (2021). Understanding colour retention in red chilli pepper fruit using a metabolite profiling approach. Food Chemistry: Molecular Sciences, 2(June 2020), 100013. https://doi.org/10.1016/j.fochms.2021.100013
- Bixley, G. S., Clark, K. M., & James, A. P. (2018). Skin colour predicts fruit and vegetable intake in young Caucasian men: A cross-sectional study. Journal of Nutrition and Intermediary Metabolism, 12, 20–27. https://doi.org/10.1016/j.jnim.2018.06.001
- Cahui-Ccama, J. M. (2015). Efecto del sustrato sobre el crecimiento y supervivencia de Chondracanthus chamissoi, en cultivo en sistema suspendido en el Litoral Marino de Ilo (Issue 052).
- Campos, J., Hita, E., Romero, J., Melgosa, M., Artigas, J. M., Capilla, P., Felipe, A., Verdú, F. M., Pujol, J., Negueruela, I., & Jiménez del Barco, L. (1997). Optiva pura y aplicada. 30, 1–35.
- Césari, M., Stefanoni, M. E., & Ventrera, N. (2018). Nuevo método de medida del color para alimentos vegetales Nuevo método de medida del color para alimentos vegetales. October 2016.
- Chutintrasri, B., & Noomhorm, A. (2007). Color degradation kinetics of pineapple puree during thermal processing. LWT - Food Science and Technology, 40(2), 300–306. https://doi.org/10.1016/j.lwt.2005.11.003
- Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1–10. https://doi.org/10.1016/j.crfs.2019.11.001
- Cortés, M., & Chiralt, A. (2008). Cinética De Los Cambios De Color En Manzana. 8–16.
- Costa, M., Cardoso, C., Afonso, C., Bandarra, N. M., & Prates, J. A. M. (2021). Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. Journal of Animal Physiology and Animal Nutrition, 105(6), 1075–1102. https://doi.org/10.1111/jpn.13509
- Delgado, E. (2014). Diseño, modelo matemático y construcción de un secadero optimizado con energías límpias.
- Demiray, E., & Tulek, Y. (2015). Color Degradation Kinetics of Carrot (Daucus carotaL.) Slices during Hot Air Drying. Journal of Food Processing and Preservation, 39(6), 800–805. https://doi.org/10.1111/jfpp.12290
- Desrosier, N. W. (2006). Conservación de alimentos, México (Compañia E).
- Ecke, F. (2018). The added value of bryophytes and macroalgae in ecological assessment of lakes. Ecological Indicators, 85(June 2017), 487–492. https://doi.org/10.1016/j.ecolind.2017.10.069
- Escobar-Mamani, F., Branca, D., & Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
- Francavilla, M., Manara, P., Kamaterou, P., Monteleone, M., & Zabaniotou, A. (2015). Cascade approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of phycobiliproteins and pyrolysis of residue. Bioresource Technology, 184, 305–313. https://doi.org/10.1016/j.biortech.2014.10.147
- Gomez, L. P., Alvarez, C., Zhao, M., Tiwari, U., Curtin, J., Garcia-Vaquero, M., & Tiwari, B. K. (2020). Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydrate Polymers, 248(July), 116784. https://doi.org/10.1016/j.carbpol.2020.116784
- Hoang, T. H., Stone, D. A. J., Duong, D. N., Bansemer, M. S., Harris, J. O., & Qin, J. G. (2017). Colour change of greenlip abalone (Haliotis laevigata Donovan) fed formulated diets containing graded levels of dried macroalgae meal. Aquaculture, 468, 278–285. https://doi.org/10.1016/j.aquaculture.2016.10.027
- Ježek, D., Tripalo, B., Brnčić, M., Karlović, D., Rimac-Brnčić, S., & Vikić-Topić, D. (2008). Dehydration of Celery by Infrared Drying. Croatica Chemica Acta, 81, 325–331.
- Min, B. R., Parker, D., Brauer, D., Waldrip, H., Lockard, C., Hales, K., Akbay, A., & Augyte, S. (2021). The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Animal Nutrition, 7(4), 1371–1387. https://doi.org/10.1016/j.aninu.2021.10.003
- Morales-Contreras, B. E., Flórez-Fernández, N., Dolores Torres, M., Domínguez, H., Rodríguez-Jasso, R. M., & Ruiz, H. A. (2022). Hydrothermal systems to obtain high value-added compounds from macroalgae for bioeconomy and biorefineries. Bioresource Technology, 343(July 2021). https://doi.org/10.1016/j.biortech.2021.126017
- Nguyen, T. V. L., Nguyen, P. B. D., Luu, X. C., Huynh, B. L., Krishnan, S., & Huynh, P. T. (2019). Kinetics of nutrient change and color retention during low-temperature microwave-assisted drying of bitter melon (Momordica charantia L.). Journal of Food Processing and Preservation, 43(12), 1–12. https://doi.org/10.1111/jfpp.14279
- Novoa, D. F., & Ramírez-Navas, J. S. (2012). Colorimetric Characterization of Manjar Blanco Del Valle. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 54–60.
- ONU / CEPAL. (2017). Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (p. 63). http://repositorio.cepal.org/handle/11362/40155
- Rastogi, N. K., & Raghavarao, K. S. M. . (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Food Sci. and Technol, 13(2), 48–59.
- Ratti, C., & Mujumbar, A. S. (2006). Handbook of Industrial Drying. In Infrared Drying (Taylor & F, pp. 423–438).
- Salavarria, E. A., & Sujay, P. (2020). Industrial and Environmetal Biotechnology Mini Review Una mirada a los estudios de transcriptoma en al - gas pardas de importancia industrial , en especial del género Macrocystis. 27(1), 49–53.
- Schifferstein, H. N. J., Wehrle, T., & Carbon, C. C. (2019). Consumer expectations for vegetables with typical and atypical colors: The case of carrots. Food Quality and Preference, 72(September 2018), 98–108. https://doi.org/10.1016/j.foodqual.2018.10.002
- Sekine, T., Nagai, H., & Hamada-Sato, N. (2021). Antihypertensive and probiotic effects of hidakakombu (Saccharina angustata) fermented by lacticaseibacillus casei 001. Foods, 10(9), 1–11. https://doi.org/10.3390/foods10092048
- Shpigel, M., Guttman, L., Shauli, L., Odintsov, V., Ben-Ezra, D., & Harpaz, S. (2017). Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet. Aquaculture, 481(January), 112–118. https://doi.org/10.1016/j.aquaculture.2017.08.006
- Zapata-Rojas, J. C., Gonzales-Vargas, A. M., & Zevallos-Feria, S. A. (2020). Estudio comparativo para propagación vegetativa de Chondracanthus chamissoi “Yuyo” sobre tres tipos de sustrato en ambiente controlado y su viabilidad en la región Moquegua. Journal of Chemical Information and Modeling, 11(4), 37–47. https://doi.org/https://doi.org/10.29019/enfoqueute.v11n4.642
- Zapata Rojas, C. (2018). Estudio comparativo en la propagación vegetativa de Chondracanthus chamissoi “yuyo” en tres tipos de sustrato en ambiente controlado en la Región Moquegua. Nacional de Moquegua.