Vol. 27 (2025): Publicación continua
Original articles

Resilience of Potato Crop (Solanum tuberosum L.) Against Hail Simulation at CIP Illpa

Juan Carlos Luna Quecaño
Faculty of Agricultural Sciences, Universidad Nacional del Altiplano, Puno, Peru.
Felix Supo Halanoca
Faculty of Agricultural Sciences, Universidad Nacional del Altiplano, Puno, Peru.
Víctor Andrés Gonzales Gonzales
Faculty of Agricultural Sciences, Universidad Nacional del Altiplano, Puno, Peru.
Dr. Javier Mamani Paredes
Faculty of Agricultural Sciences, Universidad Nacional del Altiplano, Puno, Peru.
Jaime Estrada Fuertes
Faculty Of Agricultural And Livestock Sciences, Autonomous University “Tomas Frías” Potosi, Bolivia.

Published 2025-12-31

Keywords

  • Resilience,
  • Andean crop,
  • climate change,
  • potato

How to Cite

Luna Quecaño, J. C., Supo Halanoca, F., Gonzales Gonzales, V. A., Mamani Paredes, J., & Estrada Fuertes, J. (2025). Resilience of Potato Crop (Solanum tuberosum L.) Against Hail Simulation at CIP Illpa. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 27, e27723. https://doi.org/10.18271/ria.2025.723

Abstract

Agricultural activity in recent decades has been affected by climate change, reducing harvests year after year; hail can damage crops depending on the size and intensity of the hail, potentially harming or even compromising the crop as a total loss. Understanding climate changes and the damage they cause in agriculture is essential for planning production systems, crop selection, seed variety, fertilizer application, among other actions. Once the potato crop is damaged by hail, it is important to know the resilience of the crop and take actions to continue or replace the crop. The objectives were to determine the resilience of the potato crop (Solanum tuberosum L.) against hail simulations at CIP Illpa; analyze the yields of the potato crop with different percentages of damage to the crop and analyze resilience in different phenological phases. The research methodology has a quantitative, experimental, descriptive, and sequential time approach, with an inferential non-parametric statistical design of completely randomized blocks (CRB) distributed in a factorial design of A3xB3xC2, where factor A represents the varieties; B represents the level of damage, and factor C the phenological phases. The results show that the Silver variety with simulated damage of 60% in the flowering phenological phase presents the greatest yield loss of the crop at 36.81%, and 27.24% in the Imilla negra variety. The interaction between the proposed factors does not show significance in its variables.

References

  1. Argote vega, F. E., Betancourt Mosquera, A., Villada Castillo, D. C., & Upegui Gomez, O. H. (2010). Conservación y transformación de granos ancestrales en el resguardo indígena de Guambia Silvia - Cauca. Universidad de San Buenaventura, 8(2), 17–24.
  2. Avilez, J. L., Bazalar, J., Azañedo, D., & Miranda, J. J. (2016). Peru, climate change and non-communicable diseases: ¿Where are we and where are we headed? Revista Peruana de Medicina Experimental y Salud Publica, 33(1), 143–148. https://doi.org/10.17843/rpmesp.2016.331.2016
  3. Caicedo, D. R., Sofía, M., Tellez, R., Luis, ;, Molano, E. R., & Ñústez López, C. E. (2009). Efecto de Diferentes Niveles y Épocas de Defoliación Sobre el Rendimiento de la Papa (Solanum tuberosum cv. Parda Pastusa). Rev.Fac.Nal.Agr.Medellín, 63(2), 5521–5531. http://www.scielo.org.co/pdf/rfnam/v63n2/a06v63n01.pdf
  4. Doris Marmolejo Gutarra, J. E. R. V. (2018). Tolerancia de papas nativas ( Solanum spp .) a heladas en el contexto de cambio climático Tolerance of native potatoes ( Solanum spp .) to frost in the context of climate change. 9(3), 393–400. https://doi.org/10.17268/sci.agropecu.2018.03.10
  5. Estupiñán, L. H., Gómez, J. E., Barrantes, V. J., & Limas, L. F. (2009). Efecto de actividades agropecuarias en las características del suelo en el Páramo el Granizo, (Cundinamarca - Colombia). Revista U.D.C.A Actualidad & Divulgación Científica, 12(2). https://doi.org/10.31910/rudca.v12.n2.2009.694
  6. Fairlie, T. E., & Ortega, A. (2016). Efecto de la presencia de heladas simuladas en diferentes estados fenológicos y su impacto en el rendimiento de la papa cv Ccompis: estudio preliminar. Revista Latinoamericana de La Papa, 7(1), 86–93. https://doi.org/10.37066/ralap.v7i1.73
  7. Irigoyen, I., Domeño, I., & Muro, J. (2011). Effect of Defoliation by Simulated Hail Damage on Yield of Potato Cultivars with Different Maturity Performed in Spain. American Journal of Potato Research, 88(1), 82–90. https://doi.org/10.1007/s12230-010-9166-z
  8. Lizet Helena, V. R., & Andrés Felipe, B. S. (2013). Cambio climático y salud pública: acciones desde la institucionalidad en el escenario sociocultural actual. Revista Costarricense de Salud Pública, 22, 163–168. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-14292013000200012&lang=pt
  9. Mariana, S., Gustavo, G., Alberto, L., Alejandra, B., Óscar, B., & Santiago, D. (2017). Analysis and Hierarchization of Factors Explaining Strawberry Cultivation Yield Gap in Southern Uruguay. Agrociencia Uruguay, 43–57. https://doi.org/10.31285/agro.21.1.6
  10. Martens, W. J. M., Slooff, R., & Jackson, E. K. (1998). El cambio climático, la salud humana y el desarrollo sostenible. Revista Panamericana de Salud Pública, 4(2), 100–105. https://doi.org/10.1590/s1020-49891998000800005
  11. Martin, R., & Jerez, E. (2017). Efecto De Las Temperaturas En El Rendimiento De La Papa. Cultivos Tropicales, 38(1), 75–80. http://scielo.sld.cu/pdf/ctr/v38n1/ctr09117.pdf
  12. Molina, L. G., Etchevers Barra, J. D., Pellat, F. P., Anzures, F. C., Mireles, M. A., & Pérez, A. B. (2016). Performance of the rothc-26.3 model at the plot level in Mexico. Terra Latinoamericana, 34(3), 357–366.
  13. Montiel, M. G., Perelman, S., & De La Vega, A. J. (2017). Evaluación de métodos para el análisis estadístico de ensayos comparativos de rendimiento de girasol (Helianthus annuus L.). Revista de Investigaciones Agropecuarias, 43(3), 274–279.
  14. Murphy, H. J., Manzer, F. E., Goven, M. J., & Merriam, D. C. (1967). Effect of physiological maturity and storage temperature on emergence and yield of potatoes. American Potato Journal, 44(7), 227–231. https://doi.org/10.1007/BF02862516
  15. Porras, E. E., & Gallardo, M. (2011). Caracterización agronómica de materiales genéticos de papa en la localidad Lomas de Cubiro, estado Lara, Venezuela. Agronomía Tropical, 61(2), 105–111. http://ve.scielo.org/pdf/at/v61n2/art01.pdf
  16. Quispe Mamani, J. C., Apaza Mamani, E., Marca Flores, O. H., Calcina Álvarez, D. A., Pumacallahui Salcedo, E., & Yapuchura Saico, C. R. (2021). Factores climático determinantes del rendimiento y la producción de papa en el distrito de Juli, Puno–Perú, 2000-2018. Revista Alfa, 5(15), 541–554. https://doi.org/10.33996/revistaalfa.v5i15.137
  17. Reategui, K., Aguirre, N., Oliva, R., & Aguirre, E. (2019). Phenology and yield of four potato varieties in the Peruvian Altiplano. Scientia Agropecuaria, 10(2), 265–274. https://doi.org/10.17268/sci.agropecu.2019.02.12
  18. Reyes-gonzález, F., Galvis-spinola, A., & Almaraz-suárez, J. J. (2021). Statistical model for predicting corn grain yield. 12(3), 447–459.
  19. Sifuentes Ibarra, E., Ojeda Bustamante, W., Mendoza Pérez, C., Macías Cervantes, J., Rúelas Islas, J. del R., & Inzunza Ibarra, M. A. (2018). Nutrición del cultivo de papa (Solanum tuberosum L.). Revista de Ciencias Agrícolas, 4(4), 585–597.
  20. Solano, J., González, J., Collinao, M., Borie, F., & Castillo, C. (2021). Arquitectura radical y estados fenológicos de cultivos andinos quínoa, amaranto, lupino y alforfón en un Andisol del sur de Chile. Idesia (Arica), 39(2), 23–30. https://doi.org/10.4067/s0718-34292021000200023
  21. Zare, E. N., Motahari, A., & Sillanpää, M. (2018). Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environmental Research, 162(October 2017), 173–195. https://doi.org/10.1016/j.envres.2017.12.025