Published 2018-07-27
Keywords
- Polluted water,
- pesticides,
- environmental impact,
- ecological risk
How to Cite
Abstract
The need to increase food production in the world is creating more extensive agricultural systems, featured by large scales of production, where the control of pest and weeds are made through the application of chemical products. Many of them belong to a technological package that is the case of glyphosate in the cultivation of transgenic soy; given its high efficiency in the control of invasive plants, however, residues of this product can contaminate several compartments of the ecosystem, the aquatic ecosystem being the most affected. Therefore, several adverse effects of this compound will be addressed to organisms that inhabit this ecosystem.
References
- Achiorno, C. L., Villalobos, C. de, & Ferrari, L. (2008). Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha). Chemosphere, 71, 1816–1822. Doi : 10.1016/J.CHEMOSPHERE.2008.02.001
- Bai, S. H., & Ogbourne, S. M. (2016). Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 23, 18988–19001. Doi :10.1007/s11356-016-7425-3
- Birch, H., Mikkelsen, P. S., Jensen, J. K., & Lützhøft, H.-C. H. (2011). Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 64, 485–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/220970247
- Brahushi, F., Kengara, F. O., Song, Y., Jiang, X., Munch, J. C. and Wang, F. (2017) 'Fate Processes of Chlorobenzenes in Soil and Potential Remediation Strategies: A Review', Pedosphere, 27, 407-420
- Bricheux, G., Le Moal, G., Hennequin, C., Coffe, G., Donnadieu, F., Portelli, C., Forestier, C. (2013). Characterization and evolution of natural aquatic biofilm communities exposed in vitro to herbicides. Ecotoxicology and Environmental Safety, 88, 126–134. Doi:10.1016/J.ECOENV.2012.11.003
- Bringolf, R. B., Cope, W. G., Mosher, S., Barnhart, M. C., & Shea, D. (2007). Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of lampsilis siliquoidea (unionidae). Environmental Toxicology and Chemistry, 26, 2094. Doi:10.1897/06-519R1.1
- Chekan, J. R., Cogan, D. P., & Nair, S. K. (2016). Molecular basis for resistance against phosphonate antibiotics and herbicides. Med. Chem. Commun., 7, 28–36. Doi:10.1039/C5MD00351B
- Daouk, S., Copin, P.-J., Rossi, L., Chèvre, N., & Pfeifer, H.-R. (2013). Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment. Environmental Toxicology and Chemistry, 32, 2035–2044.Doi:10.1002/etc.2276
- de Brito Rodrigues, L., de Oliveira, R., Abe, F. R., Brito, L. B., Moura, D. S., Valadares, M. C., de Oliveira, G. A. R. (2017). Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. Environmental Toxicology and Chemistry, 36, 1755–1763. Doi:10.1002/etc.3580
- Grandcoin, A., Piel, S., & Baurès, E. (2017). AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Research, 117, 187–197. https://doi.org/10.1016/J.WATRES.2017.03.055
- Guilherme, S., Gaivão, I., Santos, M. A., & Pacheco, M. (2009). Tissue specific DNA damage in the European eel (Anguilla anguilla) following a short-term exposure to a glyphosate-based herbicide. Toxicology Letters, 189, S212. Doi:10.1016/J.TOXLET.2009.06.550
- Kelly, D. W., Poulin, R., Tompkins, D. M., & Townsend, C. R. (2010). Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival. Journal of Applied Ecology, 47, 498–504.Doi :10.1111/j.1365-2664.2010.01791.x
- Koch, C. and Sures, B. (2018) 'Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP)', Environmental Pollution, 233,706-713.
- Kreutz, L. C., Gil Barcellos, L. J., de Faria Valle, S., de Oliveira Silva, T., Anziliero, D., Davi dos Santos, E., Zanatta, R. (2011). Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish & Shellfish Immunology, 30, 51–57. Doi:10.1016/J.FSI.2010.09.012
- Li, M.-H., Ruan, L.-Y., Zhou, J.-W., Fu, Y.-H., Jiang, L., Zhao, H., & Wang, J.-S. (2017). Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquatic Toxicology, 188, 159–169. Doi:10.1016/J.AQUATOX.2017.05.004
- Lindhardt, B., Abildtrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B. V, Gravesen, P. (2013). The danish pesticide leaching assessment programme. Site Characterization and monitoring design, Geological survey of Denmark and Greeland.
- Mamy, L., Barriuso, E., & Gabrielle, B. (2016). Glyphosate fate in soils when arriving in plant residues. Chemosphere, 154, 425–433. Doi:10.1016/j.chemosphere.2016.03.104
- Maqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 593–594, 787–795. Doi:10.1016/j.scitotenv.2017.03.202
- Mistretta, P., & Durkin, P. R. (2011). Human Health and Ecological Risk Assessment. Retrieved from https://www.fs.fed.us/foresthealth/pesticide/pdfs/Glyphosate_SERA_TR-052-22-03b.pdf
- Monsanto. Backgrounder – Glyphosate and Water Quality. (2014). Retrieved from https://monsanto.com/app/uploads/2017/06/glyphosate-and-water-quality.pdf
- Moore, D. R. J., Greer, C. D., Manning, G., Wooding, K., Beckett, K. J., Brain, R. A. and Marshall, G. (2017) 'A weight-of-evidence approach for deriving a level of concern for atrazine that is protective of aquatic plant communities', Integrated Environmental Assessment and Management, 13, 686-701.
- Pavlidis, G. and Tsihrintzis, V. A. (2018) 'Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: a Review', Water Resources Management, 32, 1-29.
- Pérez, G. L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., do Nascimento, M., … Zagarese, H. (2007). Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications : A Publication of the Ecological Society of America, 17, 2310–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18213971
- Pizarro, H., Vera, M. S., Vinocur, A., Pérez, G., Ferraro, M., Menéndez Helman, R. J., & dos Santos Afonso, M. (2016). Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environmental Science and Pollution Research, 23, 5143–5153.Doi:10.1007/s11356-015-5748-0
- Prosser, R. S., Rodriguez-Gil, J. L., Solomon, K. R., Sibley, P. K., & Poirier, D. G. (2017). Effects of the herbicide surfactant MON 0818 on oviposition and viability of eggs of the ramshorn snail (Planorbella pilsbryi). Environmental Toxicology and Chemistry, 36, 522–531. Doi:10.1002/etc.3571
- Rendon-von Osten, J., & Dzul-Caamal, R. (2017). Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14, 595. Doi:10.3390/ijerph14060595
- Rodriguez-Gil, J. L., Prosser, R., Hanta, G., Poirier, D., Lissemore, L., Hanson, M., & Solomon, K. R. (2017). Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosate-containing herbicide formulations. Part 2: Roles of sediment, temperature, and capacity for recovery following a pulsed exposure. Environmental Toxicology and Chemistry, 36, 512–521. Doi:10.1002/etc.3558
- Roy, N. M., Carneiro, B., & Ochs, J. (2016). Glyphosate induces neurotoxicity in zebrafish. Environmental Toxicology and Pharmacology, 42, 45–54. Doi:10.1016/J.ETAP.2016.01.003
- Sandrini, J. Z., Rola, R. C., Lopes, F. M., Buffon, H. F., Freitas, M. M., Martins, C. de M. G., & da Rosa, C. E. (2013). Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies. Aquatic Toxicology, 130–131, 171–173. Doi:10.1016/J.AQUATOX.2013.01.006
- Sihtmäe, M., Blinova, I., Künnis-Beres, K., Kanarbik, L., Heinlaan, M., & Kahru, A. (2013). Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 72, 215–224. Doi:10.1016/J.APSOIL.2013.07.005
- Stachowski-Haberkorn, S., Becker, B., Marie, D., Haberkorn, H., Coroller, L., & de la Broise, D. (2008). Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment. Aquatic Toxicology, 89, 232–241. Doi:10.1016/J.AQUATOX.2008.07.004
- Szarek, J., Siwicki, A., Andrzejewska, A., Terech-Majewska, E., & Banaszkiewicz, T. (2000). Effects of the herbicide RoundupTM on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Marine Environmental Research, 50, 263–266. Doi:10.1016/S0141-1136(00)00088-X
- Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D.,Shapiro, B. J. (2017). Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. The ISME Journal, 11, 1746–1763. Doi:10.1038/ismej.2017.58
- Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 616–617, 255–268. Doi:10.1016/J.SCITOTENV.2017.10.309
- Wang, C., Lin, X., Li, L., & Lin, S. (2016). Differential growth responses of marine phytoplankton to herbicide glyphosate. PLoS ONE, 11, e0151633. Doi:10.1371/journal.pone.0151633
- Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 99, 91–100. Doi:10.1016/J.WATRES.2016.04.041
- Zhang, C., Hu, X., Luo, J., Wu, Z., Wang, L., Li, B., Sun, G. (2015a). Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules, 20, 1161–1175. Doi:10.3390/molecules20011161
- Zhang, S., Xu, J., Kuang, X., Li, S., Li, X., Chen, D., Feng, X. (2017). Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio). Chemosphere, 181, 270–280. Doi.org/10.1016/J.CHEMOSPHERE.2017.04.094