Vol. 19 No. 1 (2017)
Short article

Determination of shelf life time of cured guinea pig meat (Cavia porcellus L.) using different concentrations of sodium chloride

Pedro Zacarías Rodríguez Barrionuevo
National University of the Altiplano Puno Peru
Marienela Calsin Cutimbo
National University of the Altiplano Puno Peru
Juan Marcos Aro Aro
National University of the Altiplano Puno Peru

Published 2017-03-30

Keywords

  • shelf life time,
  • cured guinea pig meat,
  • sodium chloride,
  • proximal chemical composition

How to Cite

Rodríguez Barrionuevo, P. Z. ., Calsin Cutimbo, M. ., & Aro Aro, J. M. (2017). Determination of shelf life time of cured guinea pig meat (Cavia porcellus L.) using different concentrations of sodium chloride. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 19(1), 53-62. https://doi.org/10.18271/ria.2017.255

Abstract

Therefore in this research the shelf life time of vacuum-packed cured guinea pig meat using different concentrations of sodium chloride was determined and the effects produced sodium chloride on the proximal chemical composition of guinea pig meat cured were evaluated, giving a longer shelf life time, the analytical methods used were: pH, TBA value, water activity, microbiological tests: aerobic mesophilic countStaphylococcus aureusSalmonella sp. and Escherichia coli. For proximal chemical evaluation were performed tests of % moisture, % ash, % protein and% fat, making a comparison between the 1% concentration of sodium chloride with a standard sample (C0%). Based on the results it was observed that the concentration of sodium chloride 1% provided greater shelf life 12 days compared to concentrations of 3% and 5% sodium chloride they showed lifetime of 10 and 8 days respectively. Regarding the proximal chemical composition the concentration 1% sodium chloride it gave a moisture content of 68.21 %, a percentage of ash of 2.11 %, a percentage of protein 11.04 % and a percentage of fat of 6.34 % compared the master batch (C0 %) presented a percentage of 69.07 % moisture, ash percentage 0.85 %, a percentage protein and percentage 14.85 6.73 %. As in the proximal chemical composition, it was observed that sodium chloride had a significant effect on the percentage of ash and protein; however the percentage of moisture and fat did not differ significantly. The results indicate that sodium chloride has a significant effect on the shelf life time of vacuum-packed cured guinea pig meat.

References

  1. • A.O.A.C.(1994). Official Methods of Analysis of the Association of Official Analytical Chemists: Sétima Edición. 331 – 965.
  2. • Bardócz, S. (1995). Polyamines in food and their consequences for food quality and human health. Food Science. 6: 341 – 346.
  3. • Beltrán, E., Yuste, J. y Mor-Mur. (2003). Lipid oxidation of pressurized and cooked chicken role of sodium chloride and mechanical processing on TBARS and hexanal values. Meat Science. 64: 19 – 25.
  4. • Beltrán, E., Yuste, J. y Mor-Mur. (2004). Use of antioxidants to minimize rancidity in pressurized and cooked chicken slurries. Meat Science. 66: 719 – 725.
  5. • Bouton, P.E., Harris, P.V.; Shorthose, W.R. (1973). Effect of ultimate pH upon the water-holding capacity and tenderness of mutton. Journal of Food Science 36: 435 – 439.
  6. • Cassens, R.G. y Newbold, R.P. (1967). Effects of temperature on postmortem metabolism in beef muscle. Food Science Agricultural 17: 254 – 256.
  7. • Chang, I. y Watts, B.M. (1950). Some effects of salt and moisture on rancidity of fat.Journal of FoodScience 15: 313 – 321.
  8. • Cossu, M. (2009). Calidad de la carne cunicula: efectos de la dieta y la selección. Disponible http://www.cuencarural.com/granja/cunicultura/59657-calidad-de-carne-cunicola-efectos-de-la-dieta-y-la-seleccion/.
  9. • Coutrom – Gambotti, C. y Gandemer, G. (1999). Lipolysis and oxidation in subcutaneous adipose tissue during dry-cured ham processing. Food Chemistry64: 95 – 101.
  10. • Doyle, M.; Beuchat, L. Montville, T. (1997). Fundamentals and Frontiers ASM. Food Microbiology 26: 154 – 163.
  11. • Ellis, R.; Currie, G.T.; Thornton, F.E.; Bollinger, N.C.; Gaddis, A.M. (1968). Carbonyls in oxidizing fat. The effect of the prooxidant activity of sodium chloride in pork tissue. Journal of Food Science 33: 555 – 561.
  12. • Estévez, M.; Morcuende, D.; Ventanas, S.; Cava, R. (2003). Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and coking by using SPME-GC-MS. Journal of Agricultural and Food Chemistry 51: 3429 – 3435.
  13. • Estévez, M.; Ventanas, S.; Cava, R. (2005). Physicochemical properties and oxidative stability of liver pate as affected by fat content. Food Chemistry 92: 449 – 457.
  14. • Estévez, M., Ventanas, S., Cava, R. (2006). Effect of natural and synthetic antioxidants on protein oxidation and colour and texture changes in refrigerated. Meat Science 74: 396 – 403.
  15. • Estévez, M. (2011). Protein carbonyls in meat systems. A review. Meat Science 89: 259 – 279.
  16. • FSA. (2006). Food Standars Agency National diet nutrition: Adults aged 19 to 64. National diet and nutrition survey www.food.gov.vf/science/101717/ndnsdocuments/ndnsv303.
  17. • FSAI. (2005). The food safety Authority of Ireland. Staphylococcus aureus. www.f.sai.ie/publications/factsheef_Staphylococcus_aureus%20.pdf.
  18. • Goulas, A.E. y Kontominas, MG. (2007). Combined effect of light salting, modified atmosphere on the shelf-life of sea bream. Biochemical and sensoryattributes. FoodChemistry 100: 287-296.
  19. • Halász, A.; Barath, A.; Simon-Sarkadi, L. y Holzaptel, W. (1994). Biogenic amines and their production by microorganisms. Food Science 5: 42 – 49.
  20. • Hernández, P. (2008). Enhancement of nutritional quality and safety in rabbit meat. Journal of Food Science 9: 1287 – 1299.
  21. • Hoyland, D.V., Taylor, A.J. (1991). Post mortem lost of texture of fish. Meat during cold storage. Food Chemistry 40: 271.
  22. • Huff, E. y Lonergan, S.M. (2005). Mechanism of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science 71 (1): 194 – 204.
  23. • INIA. (2010). Composición química y nutrición de la carne de cuy, Instituto Nacional de Investigación y Extensión Agraria, Ministerio de Agricultura. Illpa Puno – Perú.
  24. • IOM. (2004). Institute of Medicine of the National Academies. Dietary reference intakes: water, potassium, sodium chloride and sulfate. The National Academies Press. Washington – USA. Pág. 640.
  25. • Jacobsen, C.; Undeland, I.; Storr, I.; Rustad, T.; Hedges, N.; Medina, I. (2008). Preventing lipid oxidation in seafood, in improving Seafood Products for the Consumer. Meat Science 87: 426 – 446.
  26. • Kanner, J. y Kinsella, J.E. (1983). Lipid deterioration by phagocg tic cells in muscle foods: beta – carotene destruction by a peroxidase-hydrogen peroxide-halide system. Journal of Agricultural and Food Chemistry 31: 370 – 376.
  27. • Kanner, J.; Harel, S.; Jofde, R. (1991). Lipid peroxidation of muscle food as affected by chloride sodium. Journal of Agricultural and Food Chemistry 39: 1017 – 1024.
  28. • Kanner, J. (1994). Oxidative processes in meat products: Quality implication. Meat Science 36: 169 – 189.
  29. • Kauffman, R.G. y Marsh, B.B. (1994). Características de calidad del músculo como alimento. Ciencia de la carne y de los productos cárnicos. Editorial Acribia S.A. Zaragoza- España.
  30. • Kerouanton, A.; Hennekinne, J.A.; Letertre, C.; Petit, L.; Chesneau, O.; De Buyser, M.L. (2007). Characterization of Staphylococcus aureus strains associated with. Food Microbiol 115: 69 – 75.
  31. • Kondratowicz, J. y Chwastowska, I. (2006). Technological quality of pork deep-frozen directly post-slaughter. Meat Science 24 (3): 131 – 140.
  32. • Machado, F.F.; Coimbrer, J.S.; Garcia, E.E.; Minim, L.A.; Oliveira, F.C.; Sousa, R.C. (2007). Solubility and density of egg white proteins. Effects of pH and saline concentration. Meat Science 40: 1304 – 1307.
  33. • Matthews, K. y Strong, M. (2005). Salts-its role in meat products and the industry´s action plan to reduce in British Nutrition Foundation. Journal Chemistry 30: 55 – 61.
  34. • Micklander, E., Bertram, C.H., Mamo, L.S., Andersen, H., Engelsen, S.B. y Norgaard, L. (2005). Early post-mortem discrimination of water-holding capacity in pig Longissimus muscle ussing new ultrasound method. Meat Science 36 125 – 133.
  35. • Prescott, L y Klein, D. (1999). Microbiología. Cuarta Edición. Mac Graw Hill. Págs. 129.
  36. • Powers, J.M. y Mast, M.G. (1980). Quality differences in simulated kashes and conventionally processed chicken. Journal of FoodScience 45: 760 – 764.
  37. • Raharjo, S., Sofos, J.N. (1993). Effect of storage temperature on postmortem changes and freshness of meat. Meat Science 35: 145 – 147.
  38. • Ramírez, J.A., Oliver, M.A., Pla, M., Guerrero, L., Ariño B., Blasco, A., Pascual, M., Gil, M. (2004). Effect of selection for growth rate on Biochemical, quality and texture characteristics of meat from rabbits. Meat Science 67: 617 – 624.
  39. • Ruiz – Capillas, C. y Jiménez-Colmenero, F. (2004). Biogenic amines in meat and meat products critical. Food Science and Nutrition 44: 489 – 599.
  40. • Simonova, M., Chrastinova, J., Mojito, A., Laukova, R., Szaboova and Rafay, J. (2010). Quality of rabbit meat and phyto-additives. Food Science 28 (3): 161 – 167.
  41. • Thorarinsdottir, K.A., Arason, S.; Bogason, S.G.; Kristbergsson, K. (2002). Changes in myofibrillar proteins during processing of salted cod as determined by electrophoresis and differential scanning calorimetry. Food Chemistry 77: 377 – 385.
  42. • Varnam, A. y Sutherland, J. (1998). Carne y productos cárnicos. Tecnología química y microbiológica. Editorial Acribia S.A. Zaragoza – España.
  43. • Vieira, C.R.; Biasutti, E.; Capobiango, M.; Alonso, W.; Silvestre, M. (2006). Effect of salt on the solubility and emulsitying properties of casein and its tryptichycholysates pharmaceutical. Meat Science 47: 281 – 292.
  44. • Yousef, A.E. y Carlstrom, C. (2006). Microbiología de los alimentos. Manual de Laboratorio. Editorial Acribia S.A. Zaragoza - España.