Vol. 21 No. 1 (2019)
Case report

Characterization of the Wind Resource in the city of Juliaca

José Quiñonez Choquecota
Universidad Nacional del Altiplano de Puno Perú, Departamento Académico de Físico Matemáticas d
Elmer Huanca Callata
Universidad Nacional del Altiplano de Puno Perú, Departamento Académico de Físico Matemáticas
Antonio Holguino Huarza
Universidad Nacional del Altiplano de Puno Perú

Published 2019-02-26

Keywords

  • Characterization of the wind resource,
  • renewable energies,
  • Weibull distribution,
  • wind resource,
  • wind potential

How to Cite

Quiñonez Choquecota, J. ., Huanca Callata, E. ., & Holguino Huarza, A. . (2019). Characterization of the Wind Resource in the city of Juliaca. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(1), 57-68. https://doi.org/10.18271/ria.2019.445

Abstract

In the present paper, a quantitative and qualitative evaluation of the wind resource was carried out in order to characterize the exploitable potential of the wind resource in the area around the city of Juliaca in the Puno region. The data provided for the years 2013-2014 by the National Service of Meteorology and Hydrology of Peru - SENAMHI, of the station located in this city, were analyzed to compare with the database of NASA (Surface Meteorology and Solar Energy. SSE, 2012). The quantitative analysis consisting of the characterization of the average hourly and monthly wind speed for a height of 25 m above the ground, comparing the average monthly speeds of NASA and SENAMHI, shows an average difference of 8.93% during the months of spring and summer, where the wind also exceeds 3 m/s, and the predominant directions of the wind is the west and the east. The qualitative analysis corresponds to the estimation of the wind potential which was carried out with the Weibull distribution, obtaining an average annual power density at 25 m from the ground of 15.91 W/m2, for 50 m this potential is doubled. In short, in the city of Juliaca small wind power generators can be implemented, since the wind resource is not abundant and has variable direction. The characterization made with data from NASA and SENAMHI are similar, therefore, NASA data are reliable to characterize the wind resource of the city of Juliaca.

References

  1. Akdaǧ, S. A., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761–1766. https://doi.org/10.1016/j.enconman.2009.03.020
  2. Carta, J. A., González, J., & Subiela, V. (2009). Operational analysis of an innovative wind powered reverse osmosis system installed in the Canary Islands. Solar Energy, 75(2), 153–168. https://doi.org/10.1016/S0038-092X(03)00247-0
  3. Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis. Case studies in the Canary Islands. Renewable and Sustainable Energy Reviews, 13(5), 933–955. https://doi.org/10.1016/j.rser.2008.05.005
  4. Celik, A. N. (2003). Energy output estimation for small-scale wind power generators using Weibull-representative wind data. Journal of Wind Engineering and Industrial Aerodynamics, 91(5), 693–707. https://doi.org/10.1016/S0167-6105(02)00471-3
  5. Celik, A. N. (2004). A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy, 29(4), 593–604. https://doi.org/10.1016/j.renene.2003.07.002
  6. Chang, T. P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272–282. https://doi.org/10.1016/j.apenergy.2010.06.018
  7. Chen, Y., Li, H., Jin, K., & Song, Q. (2013). Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Conversion and Management, 70, 56–65. https://doi.org/10.1016/j.enconman.2013.02.007
  8. Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. https://doi.org/10.1038/nature11475
  9. De Borotoli, M. E. Canavasio, O. Benitez, F. M. (2002). Cuantificación de la dispersión al analizar velocidades de viento atmosféricos medias horarias mediante el análisis probabilístico de registros cortos. ASADES: Avances En Energías Renovables y Medio Ambiente, 6(1), 17–23.
  10. Elamouri, M., & Ben Amar, F. (2008). Wind energy potential in Tunisia. Renewable Energy, 33(4), 758–768. https://doi.org/10.1016/j.renene.2007.04.005
  11. Ermolenko, B. V., Ermolenko, G. V., Fetisova, Y. A., & Proskuryakova, L. N. (2017). Wind and solar PV technical potentials: Measurement methodology and assessments for Russia. Energy, 137, 1001–1012. https://doi.org/10.1016/j.energy.2017.02.050
  12. Guo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L. R., Huang, J. (2018). Assessing Global OceanWind Energy Resources Using Multiple Satellite Data. Remote sensing. doi: 10.3390/rs10010100
  13. Hualpa, M. (2006). Estudio de Factibilidad de Sistemas Híbridos Eólico-Solar en el Departamento de Moquegua.
  14. I. G. Rivero. (2007). Metodología para evaluar la factibilidad de una planta de generación hibridad con energías renovables.
  15. Islam, M. R., Saidur, R., & Rahim, N. A. (2011). Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy, 36(2), 985–992. https://doi.org/10.1016/j.energy.2010.12.011
  16. Kollu, R., Rayapudi, S., Narasimham, S., & Pakkurthi, K. (2012). Mixture probability distribution functions to model wind speed distributions. International Journal of Energy and Environmental Engineering, 3(1), 27. https://doi.org/10.1186/2251-6832-3-27
  17. Kim, J.-Y., Oh, K.-Y., Kim, M.-S., & Kim, K.-Y. (2018). Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar. Renewable Energy. doi: 10.1016/j.renene.2018.06.097
  18. Laiola, E., & Giungato, P. (2017). Wind characterization in Taranto city as a basis for innovative sustainable urban development. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2017.05.111Lorenzo, I. F., Tecnológica, U., Habana, D. La, Antonio, J., Habana, L., Beatriz, V., & Parnás, E. (2016). Análisis de métodos de vientos extremos para calcular las velocidades básicas, VII(2), 15–25.
  19. Li, Z. (2018). Study of site suitability assessment of regional wind resources development based on multi-criteria decision. Springer Nature. doi: 10.1007/s10098-018-1538-y
  20. Mirhosseini, M., Sharifi, F., & Sedaghat, A. (2011). Assessing the wind energy potential locations in province of Semnan in Iran. Renewable and Sustainable Energy Reviews, 15(1), 449–459. https://doi.org/10.1016/j.rser.2010.09.029
  21. Mohammadi, Kasra., Omid, Alavi ., Ali, Mostafaeipour., Navid, Goudarzi ., Mahdi, J. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. https://doi.org/doi.org/10.1016/j.enconman.2015.11.015
  22. Nuñez, E., & Rodríguez, R., Pierra, A., Reyes, O. (2014). Revista Cubana de ciencias informáticas RCCI, Cuban journal of computer science. Revista Cubana de Ciencias Informáticas, 8(3), 106–120. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-18992014000300008
  23. Peralta-Jaramillo, J. (2015). Modelamiento Computacional del Recurso Solar y Eólico para aplicación de Sistemas de Energía Renovable. Retrieved from http://dspace.usc.es/bitstream/10347/12301/1/rep_791.pdf%5Cn
  24. Seguro, J. V., & Lambert, T. W. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 85(1), 75–84. https://doi.org/10.1016/S0167-6105(99)00122-1
  25. Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351–1371. https://doi.org/10.1016/j.rser.2015.12.027
  26. Ucar, A., & Balo, F. (2009a). Evaluation of wind energy potential and electricity generation at six locations in Turkey. Applied Energy, 86(10), 1864–1872. https://doi.org/10.1016/j.apenergy.2008.12.016
  27. Ucar, A., & Balo, F. (2009b). Investigation of wind characteristics and assessment of wind-generation potentiality in Uludaǧ-Bursa, Turkey. Applied Energy, 86(3), 333–339. https://doi.org/10.1016/j.apenergy.2008.05.001
  28. Weisser, D. (2003). A wind energy analysis of Grenada: An estimation using the “Weibull” density function. Renewable Energy, 28(11), 1803–1812. https://doi.org/10.1016/S0960-1481(03)00016-8
  29. Guo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L. R., . . . Huang, J. (2018). Assessing Global OceanWind Energy Resources Using Multiple Satellite Data. Remote sensing. doi: 10.3390/rs10010100
  30. Kim, J.-Y., Oh, K.-Y., Kim, M.-S., & Kim, K.-Y. (2018). Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar. Renewable Energy. doi: 10.1016/j.renene.2018.06.097
  31. Laiola, E., & Giungato, P. (2017). Wind characterization in Taranto city as a basis for innovative sustainable urban development. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2017.05.111
  32. Li, Z. (2018). Study of site suitability assessment of regional wind resources development based on multi-criteria decision. Springer Nature. doi: 10.1007/s10098-018-1538-y