Vol. 22 No. 2 (2020)
Short article

Celular concentration and dry biomass in three species of marine microalgae: Chlorella vulgaris, Nannochloropsis oculata and Tetraselmis striata

Sheda Méndez Ancca
Universidad Nacional de Moquegua, Peru
Yesica Álvarez
Universidad Nacional de Moquegua, Peru
Luis E. Sosa
Universidad Nacional de Moquegua, Peru
Yhordan G. Vizcarra
Instituto del Mar del Perú – Laboratorio Costero, Perú

Published 2020-08-30

Keywords

  • growth,
  • cultivation,
  • microalgae,
  • yield

How to Cite

Méndez Ancca, S., Álvarez, Y., Sosa, L. E., & Vizcarra, Y. G. (2020). Celular concentration and dry biomass in three species of marine microalgae: Chlorella vulgaris, Nannochloropsis oculata and Tetraselmis striata. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(2), 155-160. https://doi.org/10.18271/ria.2020.603

Abstract

The aim of study was to determine cell concentration and dry biomass in three species of marine microalgae: Chlorella vulgaris, Nannochloropsis oculata and Tetraselmis striata. The strains were supplied by the Ilo Coastal Laboratory belonging to the Peruvian Institute of the Sea (IMARPE) and then, the microalgae were conditioned to be cultivated in a semi-controlled medium. The phases of the microalgae culture consisted of the cepario, initial, intermediate and massive. The order of maximum cellular concentration (cel/mL) for the microalgae was Nannochloropsis oculata > Chlorella vulgaris > Tetraselmis striata where N. oculata represented 7.63 times higher than T. striata. In the case of biomass, the order corresponded to: C. vulgaris > T. striata > N. oculata, with a 1.32 g difference. It was concluded that the microalgae species Chlorella vulgaris indicated the greatest advantage to be used in aquaculture compared to the other two species.

References

  1. Anthony, J., Sivashankarasubbiah, K.T., Thonthula, S., Rangamaran, V.R., Gopal, G. & Ramalingam, K. (2018). An efficient method for the sequential production of lipid and carotenoids from the Chlorella growth Factor-extracted biomass of Chlorella vulgaris. J Appl Phycol; 30, 2325-2335. Doi: 10.1007/s10811-018-1430-5
  2. Aratboni, H.A., Rafiei, N., Garcia, G.R., Alemzadeh, A. & Morones, R.J.R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Factories; 18(1), 178-19. Doi: /10.1186/s12934-019-1228-4
  3. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv; 25(3), 294-306. Doi: 10.1016/j.biotechadv.2007.02.001
  4. de Vera, C.R., Crespín, G.D., Daranas, A.H., Looga, S.M., Lillsunde, K.E., Tammela, P., Perälä, M., Hongisto, V., Virtanen, J., Rischer, H., Muller, C.D., Norte, M., Fernández, J.J. & Souto, M.L. (2018). Marine microalgae: promising source for new bioactive compounds. Mar Drugs; 16, 1-12. Doi: 10.3390/md16090317
  5. Emparan, Q., Harun, R. & Danquah, M.K. (2019). Role of phycoremediation for nutrient removal from wastewaters: a review. Appl Ecol Environ Res; 17, 889-915. Doi: 10.15666/año/1701_889915
  6. Escrivani, G.R., Luna, A.S. & Rodrigues, T.A. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A Review. J. Anal. Appl. Pyrolysis; 129, 134-149. Doi: 10.1016/j.jaap.2017.11.019
  7. Gollakotaa, A.R.K., Kishore, N. & Sai, G. (2018). A review on hydrothermal liquefaction of biomass. Renew Sustain Energy Rev; 81, 1378-1392. Doi: 10.1016/j.rser.2017.05.178
  8. Gong, Y., Guterres, H.A.D.S., Huntley, M., Sørensen, M. & Kiron, V. (2018). Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. When fed to Atlantic salmon, Salmo salar. Aquac Nutr; 24, 56-64. Doi: 10.1111/anu.12533
  9. Günerken, E., d'Hondt, E., Eppink, M., Garcia-Gonzalez, L., Elst, K. & Wijffels, R. (2015). Cell disruption for microalgae biorefineries. Biotechnol Adv; 33(2), 243-260. Doi: 10.1016/j.biotechadv.2015.01.008
  10. Instituto del Mar del Perú: IMARPE. (2008). Condicionamiento de reproductores y obtención de semillas de concha de abanico Argopectenpurpuratus (lamarck, 1819), Informe anual. Ilo, Moquegua.
  11. Kasanah, N., Amelia, W., Mukminin, A. & Triyanto, I.A. (2018). Antibacterial activity of Indonesian red algae Gracilaria edulis against bacterial fish pathogens and characterization of active fractions. Nat Prod Res; 6419, 1-5. Doi: 10.1080/14786419.2018.1471079
  12. Kent, M., Welladsen, H.M., Mangott, A. & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One; 10, 1-14. Doi: 10.1371/journal.pone.0118985
  13. Kumar, P.K., Krishna, S.V., Verma, K., Pooja, K., Bhagawan, D., Srilatha, K. & Himabindu, V. (2018). Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. J. Microbiol. Methods; 153, 108-117. Doi: 10.1016/j.mimet.2018.09.014
  14. Luangpipat, T. & Chisti, Y. (2017). Biomass and oil production by Chlorella vulgaris and four other microalgae – Effects of salinity and other factors. Journal of Biotechnology; 257, 47-57. Doi: 10.1016/j.jbiotec.2016.11.029
  15. Pinheiro, S., Roberta, L., Gonzaga, N., Neto, R., Farias, A., Luis, A., Holanda, B., Lopes, D., Sousa, M., Guadalupe, P., Alexandra, E. & Holanda, C. Shiniti, (2018). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P. W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol; 107, 1320-1329. Doi: 10.1016/j.ijbiomac. 2017.09.116.
  16. Postma, P., Miron, T., Olivieri, G., Barbosa, M., Wijffels, R. & Eppink, M. (2015). Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour Technol; 184, 297-304. Doi: 10.1016/j.biortech.2014.09.033
  17. Priyadarshani, I. & Rath, B. (2012). Commercial and industrial applications of micro algae–a review, J. Algal Biomass Util; 3, 89-100.
  18. Rizwan, M., Mujtaba, G., Memon, S.A., Lee, K. & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable Sustainable Energy Rev; 92, 394-404. Doi: 10.1016/j.rser.2018. 04.034
  19. Saadaoui, I., Sedky, R., Rasheed, R., Bounnit, T., Almahmoud, A., Elshekh, A., Dalgamouni, T., Jmal, A.L., Das, K. & P. Al Jabri, H. (2018). Assessment of the algae-based biofertilizer influence on date palm (Phoenix dactylifera L.) cultivation. J Appl Phycol; 2, 1-7, Doi: 10.1007/s10811-018-1539-6
  20. Safi, C., Frances, C., Ursu, A.V., Laroche, C., Pouzet, C., Vaca, G.C. & Pontalier, P.Y. (2015). Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Res; 8, 61-68. Doi: 10.1016/2Fj.algal.2015.01.002
  21. Sal, L. & Rosa, M.R. (2015). Efecto de dietas con tres microalgas bentónicas en el crecimiento y supervivencia post larval del Loxechinus albus, Erizo Verde. Tesis de Diploma. Universidad Nacional de Moquegua., Moquegua, Perú. http://repositorio.unam.edu.pe/handle/UNAM/39
  22. Saravana, M., Mohan, G., Ramakrishnan, T., Mani, V. & Achary, A. (2018). Protective effect of crude sulphated polysaccharide from Turbinaria ornata on isoniazid rifampicin induced hepatotoxicity and oxidative stress in the liver, kidney and brain of adult Swiss albino rats. Indian J Biochem Biophys; 55, 237–244.
  23. Shafiei, A.R., Karimi, K., Wijffels, R.H, van den Berg, C. & Eppink, M. (2020). Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresource Technology; 309, 1-34. Doi: 10.1016/j.biortech.2020.123321
  24. ’t Lam, G., Vermuë, M., Eppink, M., Wijffels, R. & Van Den Berg, C. (2018). Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol; 36(2), 216-227. Doi: 10.1016/j.tibtech.2017.10.011
  25. Usoltseva, R.V., Anastyuk, S.D., Ishina, I.A., Isakov, V.V., Zvyagintseva, T.N., Duc, P., Zadorozhny, P.A., Dmitrenok, P.S. & Ermakova, S.P. (2018). Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr Polym; 184, 260-268. Doi: 10.1016/j.carbpol.2017.12.071
  26. Velazquez, L.J., Rodríguez, J.R.M., Colla, L.M., Saenz, G.A., Cervantes, C.E., Aguilar, C.N. & Ruiz, H.A. (2018). Microalgal biomass pretreatment for bioethanol Production: a review. Biofuel Res J; 17, 780–791. Doi: 10.18331/BRJ2018.5.1.5
  27. Wahidin, S., Idris, A., Yusof, NM, Kamis, NHH & Shaleh, SRM (2018). Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Conversion and Management; 171, 1397-1404. Doi: 10.1016/j.enconman.2018.06.083
  28. Wang, J., Jin, W., Hou, Y., Niu, X., Zhang, H. & Zhang, Q. (2013). Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int J Biol Macromol; 57, 26-29. Doi: 10.1016/j.ijbiomac.2013. 03.001
  29. Ying, S.Y., Jing, Z.W., Hou, H., Wang, Lin, G.G., Xia, S.Z. & Fang, P.Y. (2018). Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa. Ecotoxicol Environ Saf; 157, 61-66. Doi: 10.1016/j.ecoenv.2018.03.051