Effect of mycorrhiza (glomus intraradices), on the yield of two potato varieties (solanum tuberosum l.) in the highlands of Puno, Peru
Published 2020-09-03
Keywords
- Potato cultivation,
- mycorrhizae,
- yield,
- symbiosis
Copyright (c) 2020 Juan Carlos Luna Quecaño1*, Juan Gregorio Zapana Pari, Alberto Magno Cutipa Limache, Nelino Florida Rofner
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Excessive use of chemical fertilizers and pesticides have negative consequences, not friendly to the environment, on the other hand, the use of organic fertilizers (mycorrhizal fungi) is an alternative for healthy agriculture, conserving biodiversity, and above all respecting our planet. The research was carried out in Puno 3,820 meters above sea level, with the aim of determining the effect of the application of mycorrhizal fungus, arbuscular vesicle, (Glomus intraradices) such as MicorrizaFer, on the yield of potato cultivation (Solanum tuberosum L.) in two black Imilla varieties and Compis, in drying conditions during the 2015–2016 agricultural campaign. The research methodology is experimental, descriptive and sequential. Five doses were applied: 1,00; 0,75; 0,50; 0,25 and 0,00 g per plant, prior inoculation of the mycorrhizal fungus on the tuber. For the distribution of treatments, select the Random Complete Block (BCA) design, and the data will be analyzed under a 2 x 5 factorial arrangement, varieties and doses, with three repetitions; the yield was determined by the gravimetric method. The result indicates that the highest yield is obtained with the dose of 1,00 g of Micorriza for plant, 14,01 t.ha-1 in the Imilla Negra variety and 13,82 t.ha-1 in the Compis variety, being higher than the control in 7,02% and 5,97% respectively. without adding chemical fertilization or chemical control of pests and diseases. Factors that could undermine the results of the investigation would be attributed to the altitude at which the investigation was conducted at 3,820 meters above sea level.
References
- Arora, N. K. (n.d.). Rhizotrophs : Plant Growth Promotion to Bioremediation.
- Barman, A., Gohain, D., Bora, U., & Tamuli, R. (2018). Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiological Research, 209(December 2017), 55–69. https://doi.org/10.1016/j.micres.2017.12.012
- Basu, S., Rabara, R. C., & Negi, S. (2018). AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 102, 36–45. https://doi.org/10.1016/j.pmpp.2017.11.007
- Bharadwaj, Dharam P., Lundquist, P. O., & Alström, S. (2007). Impact of plant species grown as monocultures on sporulation and root colonization by native arbuscular mycorrhizal fungi in potato. Applied Soil Ecology, 35(1), 213–225. https://doi.org/10.1016/j.apsoil.2006.04.003
- Bharadwaj, Dharam Parkash, Lundquist, P. O., & Alström, S. (2008). Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biology and Biochemistry, 40(10), 2494–2501. https://doi.org/10.1016/j.soilbio.2008.06.012
- Coninx, L., Martinova, V., & Rineau, F. (2017). Mycorrhiza-Assisted Phytoremediation. Advances in Botanical Research, 83, 127–188. https://doi.org/10.1016/bs.abr.2016.12.005
- Cosme, M., Fernández, I., Van der Heijden, M. G. A., & Pieterse, C. M. J. (2018). Non-Mycorrhizal Plants: The Exceptions that Prove the Rule. Trends in Plant Science, 23(7), 577–587. https://doi.org/10.1016/j.tplants.2018.04.004
- Esmeralda, E., Hongos, I. D. E., Arbusculares, M., Fosfatada, Y. F., Quiñones-aguilar, E. E., & Hernández-acosta, E. (2012). Interacción De Hongos Micorrízicos Arbusculares Y Fertilización Fosfatada En Papaya. Terra Latinoamericana, 30(2), 165–176.
- Fernandez Bidondo, L., Almasia, N., Bazzini, A., Colombo, R., Hopp, E., Vazquez-Rovere, C., & Godeas, A. (2019). The overexpression of antifungal genes enhances resistance to rhizoctonia solani in transgenic potato plants without affecting arbuscular mycorrhizal symbiosis. Crop Protection, 124(June 2018), 104837. https://doi.org/10.1016/j.cropro.2019.05.031
- Garcia, K., Doidy, J., Zimmermann, S. D., Wipf, D., & Courty, P. E. (2016). Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Trends in Plant Science, 21(11), 937–950. https://doi.org/10.1016/j.tplants.2016.07.010
- Gianinazzi-Pearson, V., Séjalon-Delmas, N., Genre, A., Jeandroz, S., & Bonfante, P. (2007). Plants and Arbuscular Mycorrhizal Fungi: Cues and Communication in the Early Steps of Symbiotic Interactions. Advances in Botanical Research, 46(07), 181–219. https://doi.org/10.1016/S0065-2296(07)46005-0
- Hoysted, G. A., Kowal, J., Jacob, A., Rimington, W. R., Duckett, J. G., Pressel, S., … Bidartondo, M. I. (2018). A mycorrhizal revolution. Current Opinion in Plant Biology, 44, 1–6. https://doi.org/10.1016/j.pbi.2017.12.004
- Kaushik, M. S., Dash, N. P., Kumar, A., Abraham, G., & Singh, P. K. (2018). Tolerance of wetland rice field’s cyanobacteria to agrochemicals in cultural condition. Biocatalysis and Agricultural Biotechnology, 13, 236–243. https://doi.org/10.1016/j.bcab.2017.12.016
- Marrache, K., Florida, N., & Escobar-Mamani, F. (2019). Indicadores químicos y microbiológicos del suelo bajo aplicación de microorganismos eficientes en plantación de cacao (Theobroma cacao L.). Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 6(2), 21–28. Retrieved from http://riiarn.agro.umsa.bo/index.php/RIIARn/article/view/124/110
- MCKay, C., & Scharman, E. J. (2015). Intentional and inadvertent chemical contamination of food, water, and medication. Emergency Medicine Clinics of North America, 33(1), 153–177. https://doi.org/10.1016/j.emc.2014.09.011
- Ryan, N. A., Duffy, E. M., Cassells, A. C., & Jones, P. W. (2000). The effect of mycorrhizal fungi on the hatch of potato cyst nematodes. Applied Soil Ecology, 15(2), 233–240. https://doi.org/10.1016/S0929-1393(00)00099-8
- Sanchez, P. D. C., Hashim, N., Shamsudin, R., & Mohd Nor, M. Z. (2020). Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends in Food Science and Technology, 96(December 2019), 208–221. https://doi.org/10.1016/j.tifs.2019.12.027
- Strullu-Derrien, C. (2018). Fossil filamentous microorganisms associated with plants in early terrestrial environments. Current Opinion in Plant Biology, 44, 122–128. https://doi.org/10.1016/j.pbi.2018.04.001
- Uzoh, I. M., & Babalola, O. O. (2018). Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems and Environment, 265(May), 524–534. https://doi.org/10.1016/j.agee.2018.07.003
- Veresoglou, S. D., Chen, B., & Rillig, M. C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46, 53–62. https://doi.org/10.1016/j.soilbio.2011.11.018
- Wang, Y., Zhang, N., Li, T., Yang, J., Zhu, X., Fang, C., … Si, H. (2019). Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Computational Biology and Chemistry, 78, 53–63. https://doi.org/10.1016/j.compbiolchem.2018.11.009
- Xxi, B. S. (n.d.). Biofabrica siglo xxi, (01 55), 1–2.
- Ye, Y., Dong, W., Luo, Y., Fan, T., Xiong, X., Sun, L., & Hu, X. (2019). Cultivar diversity and organ differences of cadmium accumulation in potato (Solanum tuberosum L.) allow the potential for Cd-safe staple food production on contaminated soils. Science of the Total Environment, 134534. https://doi.org/10.1016/j.scitotenv.2019.134534.