Vol. 24 No. 2 (2022)
Original articles

Response of white yam (Dioscorea rotundata Poir.) to Bacillus licheniformis inoculation and shading

Lily Lorena Luna Castellanos
Corporación colombiana de investigación agropecuaria (AGROSAVIA
Diana Beatríz Sánchez López
Corporación colombiana de investigación agropecuaria – AGROSAVIA

Published 2022-05-16

Keywords

  • Plant growth, bacteria, nutrition, tubercle.,
  • Plant growth,
  • rhizobacteria ,
  • nutrition ,
  • tubercle ,
  • hormone
  • ...More
    Less

How to Cite

Luna Castellanos, L. L., & Sánchez López , D. B. (2022). Response of white yam (Dioscorea rotundata Poir.) to Bacillus licheniformis inoculation and shading. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 24(2), 111-121. https://doi.org/10.18271/ria.2022.385

Abstract

The white yam crops make a substantial contribution to sustaining the food security of millions of people worldwide. However, obtaining good quality planting material is a major challenge. Multiplication rates are low, with expensive seeds and prone to contamination by pests and pathogens in traditional production systems. In addition, the intensive use of natural resources has caused impacts on biodiversity, quality of natural resources and global warming, which forces farmers to mitigate and adapt to these conditions. In this sense, the present study evaluated the response of apical cuttings of white yam to different levels of shading (0 %, 65 % and 80 %) and to the inoculation of the rhizobacterium Bacillus licheniformis-DSC1 at doses of 2 and 6 mL. A randomized complete block design with factorial arrangement and three replications was used to set up the experiment. The results demonstrated the capacity of the rhizobacterium B. licheniformis-DSC1 to increase the survival of the cuttings by 42 % with respect to the non-inoculated cuttings. It was also shown that the combined use of 65 % shade and a dose of 2 mL of rhizobacteria increased the percentage of tuberization of the cuttings by 33.33 %. The use of cuttings and microbial inoculants for seed tubers is a promising and sustainable strategy to be implemented on a large scale. 

References

  1. Agele, S.O., Ayankanmi, T.G., y Kikuno, H. (2010). Effects of synthetic hormone substitutes and genotypes on rooting and mini tuber production of vines cuttings obtained from white yam (Dioscorea rotundata, Poir). African Journal of Biotechnology, 9(30), 4714-4724.https://bit.ly/3DgZLsw
  2. Aguilar-Carpio, C., Juárez-López, P., Campos-Aguilar, I.H., Alia-Tejacal, I., Sandoval-Villa, M., y López-Martínez, V. (2018). Análisis de crecimiento y rendimiento de uchuva (Physalis peruviana L.) cultivada en hidroponía e invernadero. Revista Chapingo, 24(3), 191-202. http://dx.doi.org/10.5154/r.rchsh.2017.07.024
  3. Asfaw, A., Aderonmu, D.S., Darkwa, K., De Koeyer, D., Agre, P., Abe, A., y Asiedu, R. (2021). Genetic parameters, prediction, and selection in a white Guinea yam early‐generation breeding population using pedigree information. Crop science, 61(2), 1038-1051. http://dx.doi.org/10.1002/csc2.20382
  4. Balogun, M.O., Maroya, N., y Asiedu, R. (2014). Status and prospects for improving yam seed systems using temporary immersion bioreactors. African Journal of Biotechnology, 13(15), 1614-1622. https://doi.org/10.5897/AJBX2013.13522
  5. Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., y Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental botany, 32(2), 85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  6. Brice, D. K. E., Michel, K. A., Elisée, A. L. O. D. G., Bernard, B. L. J., Innocent, D. A., Sidoine, E. B., y Emmanuel, D. A. (2019). Effect of plant growth hormones and liquid fertilizer on rooting and tuberization of yam (Dioscorea rotundata Poir.) vine cuttings. American Journal of Plant Sciences, 10(10), 1903-1920. http://dx.doi.org/10.4236/ajps.2019.1010134
  7. Chauhan, A., Saini, R., y Sharma, J.C. (2021). Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. Journal of Plant Nutrition, 1-27. https://doi.org/10.1080/01904167.2021.1952221.
  8. Chookietwattana, K., y Maneewan, K. (2012). Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil & Environment, 31(1), 30-36. https://bit.ly/3Dus1q3
  9. Claudius-Cole, A. O., Omotayo, T. O., y Montes, A. L. (2020). Nodal vine cutting technique for assessing nematode resistance in yams. Tropical Plant Pathology, 45(1), 56-63. https://doi.org/10.1007/s40858-019-00325-9
  10. Cornet, D., Sierra, J., y Bonhomme, R. (2007). Characterization of the photosynthetic pathway of some tropical food yams (Dioscorea spp.) using leaf natural 13 C abundance. Photosynthetica, 45(2), 303-305. https://doi.org/10.1007/s11099-007-0050-0
  11. De Souza, A. P., Massenburg, L. N., Jaiswal, D., Cheng, S., Shekar, R., y Long, S. P. (2017). Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytologist, 213(1), 50-65. https://doi.org/10.1111/nph.14250
  12. Di Benedetto, A., y Tognetti, J. (2016). Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. RIA. Revista de investigaciones agropecuarias, 42(3), 258-282. https://bit.ly/31AMjBl
  13. Dibi, K.E.B., Kouakou, A.M., Camara, B., N’zué, B. y Zohouri, G.P. (2016) Inventaire des méthodes de production de semenceaux d’igname (Dioscorea spp): Une revue de la littérature. Journal of Animal & Plant Sciences, 29, 4496-4514. http://www.m.elewa.org/JAPS/2016/29.1/1.Dibi.pdf
  14. Escalante, E., J. A. S., y Kohashi, S. J. (1992). Efecto del sombreado artificial sobre algunos parámetros del crecimiento del frijol (Phaseolus vulgaris L.) Agrociencia, 48, 29- 38. https://bit.ly/3otv65I
  15. Escobar-Mamani, F., Branca, D., y Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas, 22(4), 311-312. https://doi.org/10.18271/ria.2020.191
  16. Gil, R., Bautista, I., Boscaiu, M., Lidón, A., Wankhade, S., Sánchez, H., y Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants, 6, 1-18. https://doi.org/10.1093/aobpla/plu049
  17. Guo, H., Hong, C., Zhang, J., Qin, W., y Wei, B. (2020). Soil bacterial communities associated with stony soils influence the tuber size of Tetrastigma hemsleyanum. Research Square. 1, 1-22. https://doi.org/10.21203/rs.3.rs-32788/v1
  18. Haller, A., y Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Revista de Investigaciones Altoandinas, 22(4), 313-322. http://dx.doi.org/10.18271/ria.2020.193
  19. http://dx.doi.org/10.1126/sciadv.aaw1947
  20. Johnston, M., y Onwueme, I.C. (1998). Effect of shade on photosynthetic pigments in the tropical root crops: yam, taro, tannia, cassava and sweet potato. Experimental agriculture, 34(3), 301-312. https://doi.org/10.1017/S0014479798343033
  21. Kim, M.S., Kim, H.S., Kim, Y.S., Baek, K.H., Oh, H.W., Hahn, K.W., y Jeon, J.H. (2007). Superoxide anion regulates plant growth and tuber development of potato. Plant cell reports, 26(10), 1717-1725. https://doi.org/10.1007/s00299-007-0380-1
  22. Lim, J. H., Ahn, C.H., Jeong, H.Y., Kim, Y.H., y Kim, S.D. (2011). Genetic monitoring of multi-functional plant growth promoting rhizobacteria Bacillus subtilis AH18 and Bacillus licheniformis K11 by multiplex and real-time polymerase chain reaction in a pepper farming field. Journal of the Korean Society for Applied Biological Chemistry, 54(2), 221-228. https://doi.org/10.3839/jksabc.2011.036
  23. Luna-Castellanos, L.L. y Sánchez-López, D.B. (2022). Optimización de medios de cultivos con fuentes agroindustriales para el crecimiento del ñame espino (Dioscorea rotundata Poir) Revista FAVE - Ciencias Agrarias 21(1), 67-83. https://doi.org/10.14409/fa.v21i1.11115
  24. Mariana, M., y Hamdani, J.S. (2016). Growth and yield of Solanum tuberosum at medium plain with application of paclobutrazol and paranet shade. Agriculture and Agricultural Science Procedia, 9, 26-30. https://doi.org/10.1016/j.aaspro.2016.02.117
  25. Maroya, N., Balogun, M., Asiedu, R., Aighewi, B., Kumar, P.L., y Augusto, J. (2014). Yam propagation using ‘aeroponics’ technology. Annual Research & Review in Biology, 3894-3903. https://doi.org/10.9734/ARRB/2014/11632
  26. Martínez-Reina, A.M., Tordecilla-Zumaqué, L., Grandett-Martínez, L. M., Regino-Hernández, S. M., Luna-Castellanos, L. L., y Pérez-Cantero, S. P. (2021). Analysis of the technical efficiency of the cultivation of yam (Dioscorea spp.) in the Caribbean Region of Colombia. Revista Colombiana de Ciencias Hortícolas, 15(2), 1-10. https://doi.org/10.17584/rcch.2021v15i2.12445
  27. Nookaraju, A., Kappachery, S., Yu, J.W., y Park, S.W. (2011). Rhizobacteria influence potato tuberization through enhancing lipoxygenase activity. American journal of potato research, 88(6), 441-449. https://doi.org/10.1007/s12230-011-9210-7
  28. Okongor, G., Njoku, C., Essoka, P., y Effiong, J. (2021). Climate Variability and Yam Production: Nexus and Projections. Sarhad Journal of Agriculture, 37(2), 406- 418. https://bit.ly/3yjroPq
  29. Onwueme, I. C., y Johnston, M. (2000). Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro. Experimental Agriculture, 36(4), 509-516. https://doi.org/10.1017/S0014479700001071
  30. Oyetunji, O.J., y Afolayan, E.T. (2014). Chlorophyll, Relative Water Content and Yield Assessment of Yam (Dioscorea rotundata Poir) Vine Cuttings for Mini Tuber Production under Varying Environmental Conditions. International Journal of Pure & Applied Sciences & Technology, 24(1),10-17. https://bit.ly/3Llu982
  31. Palencia, G., Mercado, T., y Combatt, E. (2006). Estudio agro-meteorológico del Departamento de Córdoba. 126 p. Facultad de Ciencias Agrícolas, Universidad de Córdoba. Gráficas del Caribe. Montería-Córdoba.
  32. Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., y Pons, T. (2019). A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223(3), 1073-1105. https://doi.org/10.1111/nph.15754
  33. Primananda, E. (2020). Morpho-anatomical adaptation of lesser yam (Dioscorea esculenta) on different planting pattern and relative light intensity in Java community forest. In IOP Conference Series: Earth and Environmental Science. 449, 1-12. https://doi.org/10.1088/1755-1315/449/1/012009
  34. Ramírez, D.A., Gavilán, C., Barreda, C., Condori, B., Rossel, G., Mwanga, R.O.M., y Quiroz, R. (2017). Characterizing the diversity of sweetpotato through growth parameters and leaf traits: Precocity and light use efficiency as important ordination factors. South African Journal of Botany, 113, 192-199. https://doi.org/10.1016/j.sajb.2017.08.009
  35. Rolando, J.L., Ramírez, D.A., Yactayo, W., Monneveux, P., y Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110, 27-35. https://doi.org/10.1016/j.envexpbot.2014.09.006
  36. Sánchez-López, D.B., y Pérez-Pazos, J.V. (2018). Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de Dioscorea rotundata in vitro. Agronomía Costarricense, 42(2), 75-91. http://dx.doi.org/10.15517/rac.v42i2.33780
  37. Sánchez, D., Pérez, J., Luna, L., García, J., y Espitia, A. (2018). Evaluación de Azotobacter vinelandii y Pseudomonas denitrificans en Dioscorea rotundata en condiciones de campo. Fave. Sección ciencias agrarias, 17(1), 35-43. https://doi.org/10.14409/fa.v17i1.7647
  38. Sánchez, D.B., Luna, L.L., Espitia, A., y Cadena, J. (2021). Yield response of yam (Dioscorea rotundata Poir.) to inoculation with Azotobacter and nitrogen chemical fertilization in the Caribbean region of Colombia. RIA. Revista de investigaciones agropecuarias, 47(1), 61-70. https://bit.ly/3wLf0Zv
  39. Scarcelli, N., Ccubry, P., Akakpo, R., Thuillet, A. A., Obidiegwu, J., Bbaco, M. N., & Vigouroux, Y. (2019). Yam genomics supports west Africa as a major cradle of crop domestication. science advances, 5(5),1-7. https://doi.org/10.1126/sciadv.aaw1947
  40. Sugihara, Y., Darkwa, K., Yaegashi, H., Natsume, S., Shimizu, M., Abe, A., y Terauchi, R. (2020). Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata). Proceedings of the National Academy of Sciences, 117(50), 31987-31992. https://doi.org/10.1073/pnas.2015830117
  41. Tamara, M.R.E., Luna, C.L.L., Espitia, M. A. A., Novoa, Y. R. S., Regino, H. S. M., y De la Ossa, A.V.A. (2021). Respuesta del ñame espino a diferentes densidades de siembra y altura de espalderas. Revista de Investigaciones Altoandinas, 23(4), 210-219. https://doi.org/10.18271/ria.2021.271
  42. Valerga, L., Darré, M., Zaro, M.J., Arambarri, A., Vicente, A.R., Lemoine, M.L., y Concellón, A. (2019). Micro-structural and quality changes in growing dark-purple eggplant (Solanum melongena L.) as affected by the harvest season. Scientia Horticulturae, 244, 22-30. https://doi.org/10.1016/j.scienta.2018.09.032
  43. Wickham, L. (2019). Successful manipulation of the growth cycle of yam (Dioscorea spp.) for year-round production for food security and climate change. Tropical Agriculture, 98(3),326-336. https://bit.ly/3y69FLg