Vol. 25 No. 2 (2023)
Original articles

Technological parameters for agroindustrial concern from seeds of Castilla pumpkin (C. moschata) and bitter pumpkin (A. undulata)

Selena del Rocío Martínez-Betancourt
Colegio de Postgraduados. Campus San Luis Potosí. Iturbide 73, Salinas de Hidalgo, S.L.P. 78600. México
Erich Dietmar Rössel-Kipping
Colegio de Postgraduados. Campus San Luis Potosí. Iturbide 73, Salinas de Hidalgo, S.L.P. 78600. México
Laura Araceli López-Martínez
Universidad Autónoma de San Luis Potosí. Coordinación Académica Región Altiplano Oeste. Carretera Salinas-Santo Domingo 200, Salinas de Hidalgo, S.L.P. México
Hipólito Ortiz-Laurel
Colegio de Postgraduados. km. 348, Carretera Federal Córdoba-Veracruz, Congregación Manuel León, Amatlan de los Reyes, Veracruz. 94946. México
Alejandro Amante-Orozco
Colegio de Postgraduados. Campus San Luis Potosí. Iturbide 73, Salinas de Hidalgo, S.L.P. 78600. México
Héctor Martín Durán-García
Instituto de Investigación de Zonas Desérticas. Universidad Autónoma de San Luis Potosí, Calle Altair 200, Colonia Del Llano. San Luis Potosí, San Luis Potosí, México. C. P. 78377

Published 2023-04-30

Keywords

  • physical properties, chemical properties, processing, biomaterials

How to Cite

Martínez-Betancourt, S. del R., Rössel-Kipping, E. D., López-Martínez, L. A., Ortiz-Laurel, H., Amante-Orozco, A., & Durán-García, H. M. (2023). Technological parameters for agroindustrial concern from seeds of Castilla pumpkin (C. moschata) and bitter pumpkin (A. undulata). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 25(2), 73-82. https://doi.org/10.18271/ria.2023.466

Abstract

The objective of this work was to quantify either physical and chemical attributes of the whole along with grounded seeds from Castilla pumpkin (Cucurbita moschata Duchesne) and bitter pumpkin (Apodanthera undulata A. Grey). The parameters data for whole seeds of both pumpkin varieties were; physical dimensions, internal friction, external friction and particle size, while for their ground compound were; electric conductivity, soluble protein, total protein, carbohydrates, oil concentration and main minerals. Collected data is fundamental for generating technology for the productive processes and an aid for more efficient use of the entire organic mass, when new raw matter is obtained for separate processing areas, to diversify readily consumption produce and increasing productivity of agroindustrial mechanization. It was concluded that pumpkin crop raised all over this farming region offers an opportunity to build up agroindustrial innovative and technological processes. A comprehensive use of seeds with their skin has a significant advantage on the food industry. Therefore, the physical and chemical attributes are responsible for the selection of technical mechanization for the industrial swap processes, as well as all required gear and feedstock like water, minerals, energy and others within the add value chain to the original organic matter.

References

  1. AOAC. (1999). Official methods of analysis, 16th. Ed. AOAC international, MD, EE. UU. 1141 pp.
  2. Kachru R, Gupta R, Alam A. (1994). Physico-chemical constituents and engineeringproperties of food crops. 1st Ed. Scientific Publishers. 188p.
  3. Lowry L,Rosebrough N, Farr A, RandalR. (1951). Protein measurement with the folin phenol reagent.J. Biol. Chem., 193:265-275. doi: https://doi.org/10.1016/S0021-9258(19)52451-6.
  4. Maduako J, Faborode M. (1990). Some physical properties of cocoa pods in relation to primary processing. Ife J Technol, 2: 1-7.
  5. McCabe W, Smith J, Harriot P. (1986). Unit operations of chemical engineering.Mcgraw-hill. 7 th Edition. 1113 p.
  6. Mohsenin, N. N. (1986). Physical properties of plant and animal materials.Gordon breach science publishers. 2nd Editions. 758 p.
  7. NMX-EC-17025-IMNC. (2006). Requisitos generales para la competencia de los laboratorios de ensayo y de calibración. Recuperado el 20 de agosto de 2019, de http://integra.cimav.edu.mx/intranet/data/files/calidad/documentos/externos/NMX-EC17025-IMNC-2006.pdf.
  8. NMX-F-068-S. (1980). Determinación de proteínas en alimentos. Recuperado el 20 de agosto de 2018, de www.colpos.mx/bancodenormas/nmexicanas/nmx-f-068-s-1980.pdf.
  9. NMX-F-312. (1978). Determinación de reductores directos y totales. Recuperado el 20 de agosto de 2018, de https://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-312-1978.PDF.
  10. RösselE, Durán H, Ortiz H. (2015). Técnicas de procesos agrícolas I: sistemática del procesamiento; corte – reducción de tamaño. Editado por el Colegio de Postgraduados. 265 p.
  11. RösselE, OrtizH, Durán H. (2016). Técnicas de procesos agrícolas II: dosificar, mezclar, cribar.Editado por el Colegio de Postgraduados. 301 p.
  12. RösselE, Ortiz H, González E, Durán H. (2017). Técnicas de procesos agrícolas III: comprimir, limpiar y desinfectar, almacenar. Editado por el Colegio de Postgraduados. 305 p.
  13. SearchingerT, WaiteR., HansonC, Ranganathan J, Matthews E. (2018). Creating a Sustainable Food Future: a menu of solutions to feed nearly 10 billion people by 2050. Synthesisreport. WorldResourcesInstitute. Recuperado el 22 de febrero de 2022 en https://www.wri.org/research/creating-sustainable-food-future.
  14. SIAP. (2017). Producción agrícola. Recuperado el 03 de noviembre de 2018, de https://nube.siap.gob.mx/cierreagricola.
  15. Siess W. (2020).GoldeneZanzigerfür das 21. Jahrhundert, CITplus, 1-2. doi: https://doi.org/10.1002/citp.202000102.
  16. Vilche C, Gely M, Santalla E. (2003). Physical properties of quinoa seeds. Biosystemsengineering, 86(1): 59-65.Doi: https://doi.org/10.1016/S1537-5110(03)00114-4.