Vol. 20 No. 3 (2018)
Review article

Glyphosate in water bodies: environmental problem

Franz Zirena Vilca
National University of Moquegua - Moquegua Peru
Wildor Gosgot Angeles
National University Toribio Rodríguez de Mendoza of Amazonas – Peru
Clara Nely Campos Quiróz
National University of the Altiplano Puno Peru
Walter Alejandro Zamalloa Cuba
National University of the Altiplano Puno Peru

Published 2018-07-27

Keywords

  • Polluted water,
  • pesticides,
  • environmental impact,
  • ecological risk

How to Cite

Zirena Vilca, F. ., Gosgot Angeles, W. ., Campos Quiróz, C. N. ., & Zamalloa Cuba, W. A. . (2018). Glyphosate in water bodies: environmental problem. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(3), 3258-332. https://doi.org/10.18271/ria.2018.396

Abstract

The need to increase food production in the world is creating more extensive agricultural systems, featured by large scales of production, where the control of pest and weeds are made through the application of chemical products. Many of them belong to a technological package that is the case of glyphosate in the cultivation of transgenic soy; given its high efficiency in the control of invasive plants, however, residues of this product can contaminate several compartments of the ecosystem, the aquatic ecosystem being the most affected. Therefore, several adverse effects of this compound will be addressed to organisms that inhabit this ecosystem.

References

  1. Achiorno, C. L., Villalobos, C. de, & Ferrari, L. (2008). Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha). Chemosphere, 71, 1816–1822. Doi : 10.1016/J.CHEMOSPHERE.2008.02.001
  2. Bai, S. H., & Ogbourne, S. M. (2016). Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 23, 18988–19001. Doi :10.1007/s11356-016-7425-3
  3. Birch, H., Mikkelsen, P. S., Jensen, J. K., & Lützhøft, H.-C. H. (2011). Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 64, 485–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/220970247
  4. Brahushi, F., Kengara, F. O., Song, Y., Jiang, X., Munch, J. C. and Wang, F. (2017) 'Fate Processes of Chlorobenzenes in Soil and Potential Remediation Strategies: A Review', Pedosphere, 27, 407-420
  5. Bricheux, G., Le Moal, G., Hennequin, C., Coffe, G., Donnadieu, F., Portelli, C., Forestier, C. (2013). Characterization and evolution of natural aquatic biofilm communities exposed in vitro to herbicides. Ecotoxicology and Environmental Safety, 88, 126–134. Doi:10.1016/J.ECOENV.2012.11.003
  6. Bringolf, R. B., Cope, W. G., Mosher, S., Barnhart, M. C., & Shea, D. (2007). Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of lampsilis siliquoidea (unionidae). Environmental Toxicology and Chemistry, 26, 2094. Doi:10.1897/06-519R1.1
  7. Chekan, J. R., Cogan, D. P., & Nair, S. K. (2016). Molecular basis for resistance against phosphonate antibiotics and herbicides. Med. Chem. Commun., 7, 28–36. Doi:10.1039/C5MD00351B
  8. Daouk, S., Copin, P.-J., Rossi, L., Chèvre, N., & Pfeifer, H.-R. (2013). Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment. Environmental Toxicology and Chemistry, 32, 2035–2044.Doi:10.1002/etc.2276
  9. de Brito Rodrigues, L., de Oliveira, R., Abe, F. R., Brito, L. B., Moura, D. S., Valadares, M. C., de Oliveira, G. A. R. (2017). Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. Environmental Toxicology and Chemistry, 36, 1755–1763. Doi:10.1002/etc.3580
  10. Grandcoin, A., Piel, S., & Baurès, E. (2017). AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Research, 117, 187–197. https://doi.org/10.1016/J.WATRES.2017.03.055
  11. Guilherme, S., Gaivão, I., Santos, M. A., & Pacheco, M. (2009). Tissue specific DNA damage in the European eel (Anguilla anguilla) following a short-term exposure to a glyphosate-based herbicide. Toxicology Letters, 189, S212. Doi:10.1016/J.TOXLET.2009.06.550
  12. Kelly, D. W., Poulin, R., Tompkins, D. M., & Townsend, C. R. (2010). Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival. Journal of Applied Ecology, 47, 498–504.Doi :10.1111/j.1365-2664.2010.01791.x
  13. Koch, C. and Sures, B. (2018) 'Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP)', Environmental Pollution, 233,706-713.
  14. Kreutz, L. C., Gil Barcellos, L. J., de Faria Valle, S., de Oliveira Silva, T., Anziliero, D., Davi dos Santos, E., Zanatta, R. (2011). Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish & Shellfish Immunology, 30, 51–57. Doi:10.1016/J.FSI.2010.09.012
  15. Li, M.-H., Ruan, L.-Y., Zhou, J.-W., Fu, Y.-H., Jiang, L., Zhao, H., & Wang, J.-S. (2017). Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquatic Toxicology, 188, 159–169. Doi:10.1016/J.AQUATOX.2017.05.004
  16. Lindhardt, B., Abildtrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B. V, Gravesen, P. (2013). The danish pesticide leaching assessment programme. Site Characterization and monitoring design, Geological survey of Denmark and Greeland.
  17. Mamy, L., Barriuso, E., & Gabrielle, B. (2016). Glyphosate fate in soils when arriving in plant residues. Chemosphere, 154, 425–433. Doi:10.1016/j.chemosphere.2016.03.104
  18. Maqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 593–594, 787–795. Doi:10.1016/j.scitotenv.2017.03.202
  19. Mistretta, P., & Durkin, P. R. (2011). Human Health and Ecological Risk Assessment. Retrieved from https://www.fs.fed.us/foresthealth/pesticide/pdfs/Glyphosate_SERA_TR-052-22-03b.pdf
  20. Monsanto. Backgrounder – Glyphosate and Water Quality. (2014). Retrieved from https://monsanto.com/app/uploads/2017/06/glyphosate-and-water-quality.pdf
  21. Moore, D. R. J., Greer, C. D., Manning, G., Wooding, K., Beckett, K. J., Brain, R. A. and Marshall, G. (2017) 'A weight-of-evidence approach for deriving a level of concern for atrazine that is protective of aquatic plant communities', Integrated Environmental Assessment and Management, 13, 686-701.
  22. Pavlidis, G. and Tsihrintzis, V. A. (2018) 'Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: a Review', Water Resources Management, 32, 1-29.
  23. Pérez, G. L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., do Nascimento, M., … Zagarese, H. (2007). Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications : A Publication of the Ecological Society of America, 17, 2310–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18213971
  24. Pizarro, H., Vera, M. S., Vinocur, A., Pérez, G., Ferraro, M., Menéndez Helman, R. J., & dos Santos Afonso, M. (2016). Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environmental Science and Pollution Research, 23, 5143–5153.Doi:10.1007/s11356-015-5748-0
  25. Prosser, R. S., Rodriguez-Gil, J. L., Solomon, K. R., Sibley, P. K., & Poirier, D. G. (2017). Effects of the herbicide surfactant MON 0818 on oviposition and viability of eggs of the ramshorn snail (Planorbella pilsbryi). Environmental Toxicology and Chemistry, 36, 522–531. Doi:10.1002/etc.3571
  26. Rendon-von Osten, J., & Dzul-Caamal, R. (2017). Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14, 595. Doi:10.3390/ijerph14060595
  27. Rodriguez-Gil, J. L., Prosser, R., Hanta, G., Poirier, D., Lissemore, L., Hanson, M., & Solomon, K. R. (2017). Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosate-containing herbicide formulations. Part 2: Roles of sediment, temperature, and capacity for recovery following a pulsed exposure. Environmental Toxicology and Chemistry, 36, 512–521. Doi:10.1002/etc.3558
  28. Roy, N. M., Carneiro, B., & Ochs, J. (2016). Glyphosate induces neurotoxicity in zebrafish. Environmental Toxicology and Pharmacology, 42, 45–54. Doi:10.1016/J.ETAP.2016.01.003
  29. Sandrini, J. Z., Rola, R. C., Lopes, F. M., Buffon, H. F., Freitas, M. M., Martins, C. de M. G., & da Rosa, C. E. (2013). Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies. Aquatic Toxicology, 130–131, 171–173. Doi:10.1016/J.AQUATOX.2013.01.006
  30. Sihtmäe, M., Blinova, I., Künnis-Beres, K., Kanarbik, L., Heinlaan, M., & Kahru, A. (2013). Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 72, 215–224. Doi:10.1016/J.APSOIL.2013.07.005
  31. Stachowski-Haberkorn, S., Becker, B., Marie, D., Haberkorn, H., Coroller, L., & de la Broise, D. (2008). Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment. Aquatic Toxicology, 89, 232–241. Doi:10.1016/J.AQUATOX.2008.07.004
  32. Szarek, J., Siwicki, A., Andrzejewska, A., Terech-Majewska, E., & Banaszkiewicz, T. (2000). Effects of the herbicide RoundupTM on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Marine Environmental Research, 50, 263–266. Doi:10.1016/S0141-1136(00)00088-X
  33. Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D.,Shapiro, B. J. (2017). Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. The ISME Journal, 11, 1746–1763. Doi:10.1038/ismej.2017.58
  34. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 616–617, 255–268. Doi:10.1016/J.SCITOTENV.2017.10.309
  35. Wang, C., Lin, X., Li, L., & Lin, S. (2016). Differential growth responses of marine phytoplankton to herbicide glyphosate. PLoS ONE, 11, e0151633. Doi:10.1371/journal.pone.0151633
  36. Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 99, 91–100. Doi:10.1016/J.WATRES.2016.04.041
  37. Zhang, C., Hu, X., Luo, J., Wu, Z., Wang, L., Li, B., Sun, G. (2015a). Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules, 20, 1161–1175. Doi:10.3390/molecules20011161
  38. Zhang, S., Xu, J., Kuang, X., Li, S., Li, X., Chen, D., Feng, X. (2017). Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio). Chemosphere, 181, 270–280. Doi.org/10.1016/J.CHEMOSPHERE.2017.04.094