Vol. 20 No. 2 (2018)
Review article

Antibiotics and their environmental implications

Franz Zirena Vilca
National University of the Altiplano Puno Peru
Wildor Gosgot Angeles
National University of the Altiplano Puno Peru
Edith Tello Palma
National University of the Altiplano Puno Peru
Clara Nelly Campos Quiroz
National University of the Altiplano Puno Peru
Teofilo Donaires Flores
National University of the Altiplano Puno Peru
Walter Alejandro Zamalloa Cuba
National University of the Altiplano Puno Peru

Published 2018-04-27

Keywords

  • Toxicology,
  • emerging pollutant,
  • water

How to Cite

Zirena Vilca, F. ., Gosgot Angeles, W. ., Tello Palma, E. ., Campos Quiroz, C. N. ., Donaires Flores, T. ., & Zamalloa Cuba, W. A. . (2018). Antibiotics and their environmental implications. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(2), 215-224. https://doi.org/10.18271/ria.2018.365

Abstract

Due to its extensive use in various livestock production activities and its use in human health care, antibiotics have become an environmental problem that draws the attention of the scientific community. Several research works report their presence in different ecosystems compartments, as well as their impact in organisms that inhabit these ecosystems which are being investigated by this community; until now, it has been reported problems of bacterial resistance and damages at DNA level in living beings, among others; in this perspective it is necessary to perform monitoring in various environmental matrixes, in order to detect and quantify their presence, to have a better understanding of their long-term effects on living beings. In this sense, it addresses aspects that determine their presence in the ecosystem, as well as shows results of works evaluating their removal of contaminated water, in order to ensure their safety from an environmental perspective and taking into consideration the health of living beings and human beings.

References

  1. Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1(DEC), 1–7. doi:10.3389/fmicb.2010.00134
  2. ANA. (2016). Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales.
  3. Archer, E., Petrie, B., Kasprzyk-Hordern, B., & Wolfaardt, G. M. (2017). The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, 437–446.doi:10.1016/j.chemosphere.2017.01.101
  4. Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. doi:10.1016/j.copbio.2008.05.006
  5. Barba-Álvarez, R., De La Lanza-Espino, G., Contreras-Ramos, A., & González-Mora, I. (2013). Insectos acuáticos indicadores de calidad del agua en México: Casos de estudio, ríos Copalita, Zimatán y Coyula, Oaxaca. Revista Mexicana de Biodiversidad, 84(1), 381–383. doi:10.7550/rmb.31037
  6. Batt, A. L., Bruce, I. B., & Aga, D. S. (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 142(2), 295–302. doi:10.1016/j.envpol.2005.10.010
  7. Bergeron, S., Boopathy, R., Nathaniel, R., Corbin, A., & LaFleur, G. (2015). Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. International Biodeterioration and Biodegradation, 102, 370–374.doi:10.1016/j.ibiod.2015.04.017
  8. Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J., & Croxford, A. (2003). Prioritisation of veterinary medicines in the UK environment. Toxicology Letters, 142(3), 207–218. doi:10.1016/S0378-4274(03)00067-5
  9. Bundschuh, M., Hahn, T., Ehrlich, B., Höltge, S., Kreuzig, R., & Schulz, R. (2016). Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates. Bulletin of Environmental Contamination and Toxicology, 96(2), 139–143. doi:10.1007/s00128-015-1656-8
  10. Butkovskyi, A., Hernandez Leal, L., Rijnaarts, H. H. M., & Zeeman, G. (2015). Fate of pharmaceuticals in full-scale source separated sanitation system. Water Research, 85, 384–392. doi:10.1016/j.watres.2015.08.045
  11. Byaruhanga, J., Tayebwa, D. S., Eneku, W., Afayoa, M., Mutebi, F., Ndyanabo, S., … Vudriko, P. (2017). Retrospective study on cattle and poultry diseases in Uganda. International Journal of Veterinary Science and Medicine. doi:10.1016/j.ijvsm.2017.07.001
  12. Carvalho, I. T., & Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environment International. Elsevier Ltd. doi:10.1016/j.envint.2016.06.025
  13. Chen, Q. L., An, X. L., Li, H., Zhu, Y. G., Su, J. Q., & Cui, L. (2017). Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? Soil Biology and Biochemistry, 114, 229–237. doi:10.1016/j.soilbio.2017.07.022
  14. Cui, C., Jin, L., jiang, L., Han, Q., Lin, K., Lu, S., … Cao, G. (2016). Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Science of The Total Environment, 572, 244–251. doi:10.1016/j.scitotenv.2016.07.183
  15. Cunha, S. C., & Fernandes, J. O. (2010). Development and validation of a method based on a QuEChERS procedure and heart-cutting GC-MS for determination of five mycotoxins in cereal products. Journal of Separation Science, 33(4–5), 600–609. doi:10.1002/jssc.200900695
  16. Done, H. Y., Venkatesan, A. K., & Halden, R. U. (2015). Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? The AAPS Journal, 17(3), 513–524. doi:10.1208/s12248-015-9722-z
  17. Drogui, R. D. P. (2013). Tetracycline antibiotics in the environment : a review, 209–227. doi:10.1007/s10311-013-0404-8
  18. Duchene, O., Vian, J. F., & Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment, 240, 148–161. doi:10.1016/j.agee.2017.02.019
  19. FAO. (2017). Producción pecuaria en América Latina y el Caribe | Oficina Regional de la FAO para América Latina y el Caribe | Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de http://www.fao.org/americas/perspectivas/produccion-pecuaria/es/
  20. Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Science of the Total Environment, 409(18), 3409–3417. doi:10.1016/j.scitotenv.2011.05.053
  21. Grenni, P., Ancona, V., & Barra Caracciolo, A. (2017). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal. doi:10.1016/j.microc.2017.02.006
  22. He, X., Xu, Y., Chen, J., Ling, J., Li, Y., Huang, L., Xie, G. (2017). Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Research, 124, 39–48. doi:10.1016/j.watres.2017.07.048
  23. Ikehata, K., Jodeiri Naghashkar, N., & Gamal El-Din, M. (2006). Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone: Science & Engineering, 28(6), 353–414. doi:10.1080/01919510600985937
  24. Jechalke, S., Heuer, H., Siemens, J., Amelung, W., & Smalla, K. (2014). Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536–545. doi:10.1016/j.tim.2014.05.005
  25. Jiang, H., Zhou, R., Yang, Y., Chen, B., & Cheng, Z. (2017). Characterizing the antibiotic resistance genes in a river catchment: Influence of anthropogenic activities. Journal of Environmental Sciences, 1–8. doi:10.1016/j.jes.2017.08.009
  26. Kim, H. Y., Lee, I. S., & Oh, J. E. (2017). Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea. Science of the Total Environment, 579, 940–949. doi:10.1016/j.scitotenv.2016.10.039
  27. Klatte, S., Schaefer, H. C., & Hempel, M. (2017). Pharmaceuticals in the environment – A short review on options to minimize the exposure of humans, animals and ecosystems. Sustainable Chemistry and Pharmacy, 5, 61–66. doi:10.1016/j.scp.2016.07.001
  28. Koba, O., Golovko, O., Kodešová, R., Fér, M., & Grabic, R. (2017). Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Environmental Pollution, 220, 1251–1263. doi:10.1016/j.envpol.2016.11.007
  29. Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366. doi:10.1016/j.jenvman.2009.01.023
  30. Le-Minh, N., Khan, S. J., Drewes, J. E., & Stuetz, R. M. (2010). Fate of antibiotics during municipal water recycling treatment processes. Water Research, 44(15), 4295–4323. doi:10.1016/j.watres.2010.06.020
  31. Li, Jianan, Cheng, Weixiao, Xu, Like, Jiao, Yanan, Ali Baig, Shams, C. H. (2015). Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents’ influence to downstream water environment. Environmental Science Pollution Research, 318, 319–328. doi:10.1016/j.jhazmat.2016.07.021
  32. Li, C., Chen, J., Wang, J., Ma, Z., Han, P., Luan, Y., & Lu, A. (2015). Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Science of the Total Environment, 521–522, 101–107. doi:10.1016/j.scitotenv.2015.03.070
  33. Liu, S., Zhao, X. rong, Sun, H. yuan, Li, R. ping, Fang, Y. feng, & Huang, Y. ping. (2013). The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal, 231, 441–448. doi:10.1016/j.cej.2013.07.057
  34. Magdaleno, A., Juárez, Á. B., Paz, M., Tornello, C., Núñez, L., & Moretton, J. (2012). Ecotoxicological and genotoxic evaluation of hospital wastewaters. Acta Toxicol{ó}gica Argentina, 20(1), 14–24. Recuperado de http://www.scielo.org.ar/scielo.php?script=sci%7B_%7Darttext%7B&%7Dpid=S1851-37432012000100002%7B&%7Dlng=es%7B&%7Dnrm=iso%7B&%7Dtlng=es
  35. Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570–579. doi:10.1016/j.envpol.2006.11.035
  36. Marx, C., Günther, N., Schubert, S., Oertel, R., Ahnert, M., Krebs, P., & Kuehn, V. (2015). Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters. Science of the Total Environment, 538, 779–788. doi:10.1016/j.scitotenv.2015.08.112
  37. Molla, W., Frankena, K., Gari, G., & de Jong, M. C. M. (2017). Field study on the use of vaccination to control the occurrence of lumpy skin disease in Ethiopian cattle. Preventive Veterinary Medicine, 147, 34–41. doi:10.1016/j.prevetmed.2017.08.019
  38. Mudryk, J., Skórczewski, P., Mudryk, Z. J., Jankowska, M., Perli, P., & Zdanowicz, M. (2013). Antibiotic resistance of neustonic and planktonic fecal coliform bacteria isolated from two water basins differing in the level of pollution Resistencia a antibióticos de bacterias coliformes fecales , nesutónicas y planctónicas , aisladas de dos cuerpos, 23(3), 431–439.
  39. Murphy, E. A., Post, G. B., Buckley, B. T., Lippincott, R. L., & Robson, M. G. (2012). Future Challenges to Protecting Public Health from Drinking-Water Contaminants. Annual Review of Public Health, 33(1), 209–224. doi:10.1146/annurev-publhealth-031811-124506
  40. Nieto, A., Borrull, F., Marcé, R. M., & Pocurull, E. (2007). Selective extraction of sulfonamides, macrolides and other pharmaceuticals from sewage sludge by pressurized liquid extraction. Journal of Chromatography A, 1174(1–2), 125–131. doi:10.1016/j.chroma.2007.09.068
  41. Nnadozie, C. F., Kumari, S., & Bux, F. (2017). Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Reviews in Environmental Science and Biotechnology, 16(3), 1–25. doi:10.1007/s11157-017-9438-x
  42. OMS. (2016). OMS | Uso de los antimicrobianos. WHO. Recuperado de http://www.who.int/drugresistance/use/es/
  43. OMS. (2017). OMS | Las 10 principales causas de defunción. Recuperado de http://www.who.int/mediacentre/factsheets/fs310/es/
  44. Organización Panamericana de la Salud. (2015). Plan de acción sobre la resistencia a los antimicrobianos antimicrobianos, 1–3.
  45. Özcan, A., Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518–526. doi:10.1016/j.cej.2016.06.105
  46. Padilla-Robles, B. G., Alonso, A., Martínez-Delgadillo, S. A., González-Brambila, M., Jaúregui-Haza, U. J., & Ramírez-Muñoz, J. (2015). Electrochemical degradation of amoxicillin in aqueous media. Chemical Engineering and Processing: Process Intensification, 94, 93–98. doi:10.1016/j.cep.2014.12.007
  47. Pan, M., & Chu, L. M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment. doi:10.1016/j.scitotenv.2017.04.214
  48. Pan, M., & Chu, L. M. (2017). Leaching behavior of veterinary antibiotics in animal manure-applied soils. Science of the Total Environment, 579, 466–473. doi:10.1016/j.scitotenv.2016.11.072
  49. Pan, M., & Chu, L. M. (2017). Leaching behavior of veterinary antibiotics in animal manure-applied soils. Science of the Total Environment, 579, 466–473. doi:10.1016/j.scitotenv.2016.11.072
  50. Peña-Álvarez, A., & Castillo-Alanís, A. (2015). Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextracción en fase sólida-cromatografía de gases-espectrometría de masas (MEFS-CG-EM). Tip, 18(1), 29–42.doi:10.1016/j.recqb.2015.05.003
  51. Poel, I. Van De. (2003). The transformation of technological regimes. Research Policy, 32(1), 49–68. doi:10.1016/S0048-7333(01)00195-0
  52. Reynaud, S., & Deschaux, P. (2006). The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review. Aquatic Toxicology, 77(2), 229–238. doi:10.1016/j.aquatox.2005.10.018
  53. Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C. ., Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360. doi:10.1016/j.scitotenv.2013.01.032
  54. Santos, L., & Ramos, F. (2016). Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends in Food Science and Technology, 52, 16–30. doi:10.1016/j.tifs.2016.03.015
  55. Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 34(8), 1215–1226.doi:10.1016/j.envint.2008.04.009
  56. Shi, W., Yue, T., Du, Z., Wang, Z., & Li, X. (2016). Surface modeling of soil antibiotics. The Science of the Total Environment, 543(Pt A), 609–19. doi:10.1016/j.scitotenv.2015.11.077
  57. Singer, A. C., Järhult, J. D., Grabic, R., Khan, G. A., Lindberg, R. H., Fedorova, G., … Söderström, H. (2014). Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers. PLoS ONE, 9(9).doi:10.1371/journal.pone.0108621
  58. Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 1(1), 14–24. doi:10.1016/j.emcon.2015.07.001
  59. Tasho, R. P., & Cho, J. Y. (2016). Science of the Total Environment Veterinary antibiotics in animal waste , its distribution in soil and uptake by plants : A review. Science of the Total Environment, 563–564(3), 366–376. doi:10.1016/j.scitotenv.2016.04.140
  60. Ternes, T. A., Prasse, C., Eversloh, C. L., Knopp, G., Cornel, P., Schulte-Oehlmann, U., Oehlmann, J. (2017). Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens. Environmental Science and Technology, 51(1), 308–319. doi:10.1021/acs.est.6b04855
  61. Ternes, T., Joss, A., & Oehlmann, J. (2015). Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Research, 72, 1–2. doi:10.1016/j.watres.2015.02.055
  62. Underwood, J. C., Harvey, R. W., Metge, D. W., Repert, D. A., Baumgartner, L. K., Smith, R. L.,Barber, L. B. (2011). Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environmental Science and Technology, 45(7), 3096–3101. doi:10.1021/es103605e
  63. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. doi:10.1073/pnas.1503141112
  64. van Dijk, L., Hayton, A., Main, D. C. J., Booth, A., King, A., Barrett, D. C., Reyher, K. K. (2017). Participatory Policy Making by Dairy Producers to Reduce Anti-Microbial use on Farms. Zoonoses and Public Health, 64(6), 476–484. doi:10.1111/zph.12329
  65. Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Science of the Total Environment, 429, 123–155. doi:10.1016/j.scitotenv.2012.04.028
  66. Villalobos, A. P., Barrero, L. I., Rivera, S. M., Ovalle, M. V., & Valera, D. (2013). Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica, 34(0), 67. doi:10.7705/biomedica.v34i0.1698
  67. Vo, T. D. H., Bui, X. T., Cao, N. D. T., Luu, V. P., Nguyen, T. T., Dang, B. T., … Dao, T. S. (2016). Investigation of antibiotics in health care wastewater in Ho Chi Minh City, Vietnam. Environmental Monitoring and Assessment, 188(12). doi:10.1007/s10661-016-5704-6
  68. von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., … Elosegi, A. (2017). River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. Science of the Total Environment, 596–597(April), 465–480. doi:10.1016/j.scitotenv.2017.04.081
  69. Werbeloff, L., Brown, R. R., & Loorbach, D. (2016). Pathways of system transformation: Strategic agency to support regime change. Environmental Science and Policy, 66, 119–128. doi:10.1016/j.envsci.2016.08.010
  70. Zhang, Q., & Dick, W. A. (2014). Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. Science of the Total Environment, 493, 445–453. doi:10.1016/j.scitotenv.2014.05.114
  71. Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science and Technology, 49(11), 6772–6782. doi:10.1021/acs.est.5b00729
  72. Zhang, W., Naveena, B. M., Jo, C., Sakata, R., Zhou, G., Banerjee, R., & Nishiumi, T. (2017). Technological demands of meat processing–An Asian perspective. Meat Science, 132, 35–44. doi:10.1016/j.meatsci.2017.05.008